login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Consider all consecutive integer Pythagorean 11-tuples (X, X+1, X+2, X+3, X+4, X+5, Z-4, Z-3, Z-2, Z-1, Z) ordered by increasing Z; sequence gives X values.
9

%I #39 Sep 08 2022 08:45:41

%S 0,55,1260,27715,608520,13359775,293306580,6439385035,141373164240,

%T 3103770228295,68141571858300,1496010810654355,32844096262537560,

%U 721074106965172015,15830786256971246820,347556223546402258075,7630406131763878430880,167521378675258923221335

%N Consider all consecutive integer Pythagorean 11-tuples (X, X+1, X+2, X+3, X+4, X+5, Z-4, Z-3, Z-2, Z-1, Z) ordered by increasing Z; sequence gives X values.

%C In general, the first terms of consecutive integer Pythagorean 2k+1-tuples may be found as follows: let first(0)=0, first(1) = k*(2k+1) and, for n > 1, first(n) = (4k+2)*first(n-1) - first(n-2) + 2*k^2; e.g., if k=6, then first(2) = 2100 = 26*78 - 0 + 72.

%C In general, the first and last terms of consecutive integer Pythagorean 2k+1-tuples may be found as follows: let first(0)=0 and last(0)=k; for n > 0, let first(n) = (2k+1)*first(n-1) + 2k*last(n-1) + k and last(n) = (2k+2)*first(n-1) + (2k+1)*last(n-1) + 2k; e.g., if k=6 and n=2, then first(2) = 2100 = 13*78 + 12*90 + 6 and last(2) = 2274 = 14*78 + 13*90 + 12.

%C In general, the first terms of consecutive integer Pythagorean 2k+1-tuples may be found as follows: first(n) = (k^(n+1)((1+sqrt((k+1)/k))^(2n+1) + (1-sqrt((k+1)/k))^(2n+1)) - 2*k)/4; e.g., if k=6 and n=2, then first(2) = 2100 = (6^3((1+sqrt((7/6))^5 + (1-sqrt(7/6))^5) - 2*6)/4.

%C In general, if u(n) is the numerator and e(n) is the denominator of the n-th continued fraction convergent to sqrt((k+1)/k), then the first terms of consecutive integer Pythagorean 2k+1-tuples may be found as follows: first(2n+1) = k*u(2n)*u(2n+1) and, for n > 0, first(2n) = (k+1)*e(2n-1)*e(2n); e.g., a(1) = 55 = 5*1*11 and a(2) = 1260 = 6*10*21.

%C In general, if first(n) is the first term of the n-th consecutive integer Pythagorean 2k+1-tuple, then lim_{n->inf} first(n+1)/first(n) = k*(1+sqrt((k+1)/k))^2 = 2k + 1 + 2*sqrt(k^2+k).

%D A. H. Beiler, Recreations in the Theory of Numbers. New York: Dover, 1964, pp. 122-125.

%D L. E. Dickson, History of the Theory of Numbers, Vol. II, Diophantine Analysis. Dover Publications, Inc., Mineola, NY, 2005, pp. 181-183.

%D W. Sierpinski, Pythagorean Triangles. Dover Publications, Mineola NY, 2003, pp. 16-22.

%H G. C. Greubel, <a href="/A157096/b157096.txt">Table of n, a(n) for n = 0..740</a> (terms 0..200 from Vincenzo Librandi)

%H Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a>

%H Ron Knott, <a href="http://www.maths.surrey.ac.uk/hosted-sites/R.Knott/Pythag/pythag.html">Pythagorean Triples and Online Calculators</a>

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (23,-23,1).

%F For n > 1, a(n) = 22*a(n-1) - a(n-2) + 50.

%F For n > 0, a(n) = 11*a(n-1) + 10*A157097(n-1) + 5.

%F a(n) = (5^(n+1)*((1+sqrt(6/5))^(2n+1) + (1-sqrt(6/5))^(2n+1)) - 2*5)/4.

%F Lim_{n->inf} a(n+1)/a(n) = 5(1+sqrt(6/5))^2 = 11+2*sqrt(30).

%F G.f.: 5*x*(x-11)/((x-1)*(x^2-22*x+1)). - _Colin Barker_, Jun 08 2012

%F a(n) = 23*a(n-1) - 23*a(n-2) + a(n-3). _Vincenzo Librandi_, Jun 09 2012

%F a(n) = 5*(-1/2+1/20*(11+2*sqrt(30))^(-n)*(5-sqrt(30)+(5+sqrt(30))*(11+2*sqrt(30))^(2*n))). - _Colin Barker_, Mar 03 2016

%e a(2)=55 since 55^2 + 56^2 + 57^2 + 58^2 + 59^2 + 60^2 = 61^2 + 62^2 + 63^2 + 64^2 + 65^2.

%t CoefficientList[Series[5*x*(x-11)/((x-1)*(x^2-22*x+1)),{x,0,20}],x] (* _Vincenzo Librandi_, Jun 09 2012 *)

%o (Magma) I:=[0, 55, 1260]; [n le 3 select I[n] else 23*Self(n-1) - 23*Self(n-2) + Self(n-3): n in [1..20]]; // _Vincenzo Librandi_, Jun 09 2012

%o (PARI) x='x+O('x^50); concat([0], Vec(5*x*(x-11)/((x-1)*(x^2-22*x+1)))) \\ _G. C. Greubel_, Nov 04 2017

%Y Cf. A001652, A157084, A157088, A157092.

%K nonn,easy

%O 0,2

%A _Charlie Marion_, Mar 12 2009

%E Terms a(15) onward added by _G. C. Greubel_, Nov 06 2017