login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Consider all Consecutive Integer Pythagorean 9-tuples (X,X+1,X+2,X+3,X+4,Z-3,Z-2,Z-1,Z) ordered by increasing Z; sequence gives Z values.
4

%I #13 May 24 2021 07:38:35

%S 4,44,764,13684,245524,4405724,79057484,1418628964,25456263844,

%T 456794120204,8196837899804,147086288076244,2639356347472564,

%U 47361327966429884,849864547048265324,15250200518902345924

%N Consider all Consecutive Integer Pythagorean 9-tuples (X,X+1,X+2,X+3,X+4,Z-3,Z-2,Z-1,Z) ordered by increasing Z; sequence gives Z values.

%C For n > 1, a(n) = 18*a(n-1) - a(n-2) - 24; e.g., 13684 = 18*764 - 44 - 24.

%C In general, the last terms of Consecutive Integer Pythagorean 2k+1-tuples may be found as follows: let last(0)=0, last(1)=k*(2k+3) and, for n > 1, last(n) = (4k+2)*last(n-1) - last(n-2) - 2*k*(k-1); e.g., if k=5, then last(2) = 1385 = 22*65 - 5 - 40.

%C For n > 0, a(n) = 10*A157092(n-1) + 9*a(n-1) + 8; e.g., 13684 = 10*680 + 9*764 + 8. In general, the first and last terms of Consecutive Integer Pythagorean 2k+1-tuples may be found as follows: let first(0)=0 and last(0)=k; for n > 0, let first(n) = (2k+1)*first(n-1) + 2k*last(n-1) + k and last(n) = (2k+2)*first(n-1) + (2k+1)*last(n-1) + 2k; e.g., if k=5 and n=2, then first(2) = 1260 = 11*55 + 10*65 + 5 and last(2) = 1385 = 12*55 + 10*65 + 10.

%C a(n) = 4^n*5((1+sqrt(5/4))^(2n+1) - (1-sqrt(5/4))^(2n+1))/(4*sqrt(5/4)) + 3/2; e.g., 764 = 4^2*5((1+sqrt((5/4))^5 - (1-sqrt(5/4))^5)/(4*sqrt(5/4)) + 3/2.

%C In general, the last terms of Consecutive Integer Pythagorean 2k+1-tuples may be found as follows: if q=(k+1)/k, then last(n) = k^n*(k+1)*((1+sqrt(q))^(2*n+1) - (1-sqrt(q))^(2*n+1))/(4*sqrt(q)) + (k-1)/2; e.g., if k=5 and n=2, then last(2) = 1385 = 5^2*6((1+sqrt((6/5))^5 - (1-sqrt(6/5))^5)/(4*sqrt(6/5)) + 4/2.

%C In general, if u(n) is the numerator and e(n) is the denominator of the n-th continued fraction convergent to sqrt((k+1)/k), then the last terms of Consecutive Integer Pythagorean 2k+1-tuples may be found as follows: last(2n+1) = (e(2n+1)^2+k^2*e(2n)^2 + k*(k-1)*e(2n+1)*e(n))/k and, for n > 0, last(2n) = (k*(u(2n)^2 + u(2n-1)^2 + (k-1)*u(2n)*u(2n-1)))/(k+1); e.g., a(3) = 13684 = (144^2 + 4^2*17^2 + 4*3*144*17)/4 and a(4) = 245524 = (4*(341^2 + 161^2 + 3*341*161))/5.

%C In general, if b(0)=1, b(1)=4k+2 and, for n > 1, b(n) = (4k+2)*b(n-1) - b(n-2), and last(n) is the last term of the n-th Consecutive Integer Pythagorean 2k+1-tuple as defined above, then Sum_{i=0..n} (k*last(i) - k(k-1)/2) = k(k+1)/2*b(n); e.g., if n=3, then 1+2+3+4+41+42+43+44+761+762+763+764 = 3230 = 10*323.

%C Lim_{n->infinity} a(n+1)/a(n) = 4*(1+sqrt(5/4))^2 = 9 + 2*sqrt(20). In general, if last(n) is the last term of the n-th Consecutive Integer Pythagorean 2k+1-tuple, then lim_{n->infinity} last(n+1)/last(n) = k*(1+sqrt((k+1)/k))^2 = 2k + 1 + 2*sqrt(k^2+k).

%D A. H. Beiler, Recreations in the Theory of Numbers. New York: Dover, 1964, pp. 122-125.

%D L. E. Dickson, History of the Theory of Numbers, Vol. II, Diophantine Analysis. Dover Publications, Inc., Mineola, NY, 2005, pp. 181-183.

%D W. Sierpinski, Pythagorean Triangles. Dover Publications, Mineola NY, 2003, pp. 16-22.

%H Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a>

%H Ron Knott, <a href="http://www.maths.surrey.ac.uk/hosted-sites/R.Knott/Pythag/pythag.html">Pythagorean Triples and Online Calculators</a>

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (19, -19, 1).

%F Empirical g.f.: 4*(1-8*x+x^2)/((1-x)*(1-18*x+x^2)). - _Colin Barker_, Mar 27 2012

%e a(2)=764 since 680^2 + 681^2 + 682^2 + 683^2 + 684^2 = 761^2 + 762^2 + 763^2 + 764^2.

%Y Cf. A001653, A157085, A157089, A157097.

%K nonn

%O 0,1

%A _Charlie Marion_, Mar 12 2009