login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of integer sequences of length n+1 with sum zero and sum of absolute values 50.
2

%I #11 Jan 28 2022 07:40:07

%S 2,150,6252,182500,4112502,75578370,1173777752,15795816120,

%T 187652162502,1996568642530,19245807386652,169668375420180,

%U 1378768046330402,10396793993805030,73166155146412752,482928212647720720,3002693915693248002,17655197338344400470

%N Number of integer sequences of length n+1 with sum zero and sum of absolute values 50.

%H T. D. Noe, <a href="/A157074/b157074.txt">Table of n, a(n) for n = 1..1000</a>

%H <a href="/index/Rec#order_51">Index entries for linear recurrences with constant coefficients</a>, signature (51,-1275,20825,-249900,2349060,-18009460, 115775100,-636763050,3042312350,-12777711870,47626016970,-158753389900, 476260169700,-1292706174900,3188675231420,-7174519270695,14771069086725, -27900908274925,48459472266975,-77535155627160,114456658306760, -156077261327400,196793068630200,-229591913401900,247959266474052, -247959266474052,229591913401900,-196793068630200,156077261327400, -114456658306760,77535155627160,-48459472266975,27900908274925,-14771069086725, 7174519270695,-3188675231420,1292706174900,-476260169700,158753389900, -47626016970,12777711870,-3042312350,636763050,-115775100,18009460,-2349060, 249900,-20825,1275,-51,1).

%F a(n) = T(n,25); T(n,k) = Sum_{i=1..n} binomial(n+1, i)*binomial(k-1, i-1)*binomial(n-i+k, k).

%F From _G. C. Greubel_, Jan 27 2022: (Start)

%F a(n) = (n+1)*binomial(n+24, 25)*Hypergeometric3F2([-24, -n, 1-n], [2, -n-24], 1).

%F a(n) = (126410606437752/50!)*n*(n+1)*(9623905480333281923493425053824177930240000000000 + 27100515339271296805042905104567762524569600000000*n + 49226599934719560481828455826236675352166400000000*n^2 + 51923175705445481350794593882064923048017920000000*n^3 + 46502829595021715716879102923565907828539392000000*n^4 + 28607394119885617552139740430561122618473185280000*n^5 + 16559588497213417883781098164439679738807582720000*n^6 + 6903192311627666498917104674104501458397298688000*n^7 + 2894036204442771597885580471785456670461945446400*n^8 + 882529358789488763775646630321568918645729918976*n^9 + 285704714285545970609012303782721701384304001024*n^10 + 66744193695557588078616189319402098781536485376*n^11 + 17394219679949413313652735722550417627568410624*n^12 + 3209212575849629078911083109861120504852463616*n^13 + 693340015644326307061765976396831207893776384*n^14 + 103183723405307213352941409893689330849622016*n^15 + 18890270959451165193941203482138711306505984*n^16 + 2301923694341735297363581288294981193895936*n^17 + 363246399568340082151669298560235347864064*n^18 + 36632957463825141955678003229613126558336*n^19 + 5051271387716061681982819535517710183664*n^20 + 424699960734096109443243714664325553216*n^21 + 51748891662219811557282274201341501784*n^22 + 3644289612230496197746802122023398616*n^23 + 396093870596357042648294916274601009*n^24 + 23416970176809393473086005534732576*n^25 + 2288479608700865971390942858179924*n^26 + 113584302206510356395975946196976*n^27 + 10049618631034902174836327665474*n^28 + 417815336521106587249172637024*n^29 + 33668912037122043295220280476*n^30 + 1166960621063436872100315624*n^31 + 86099204270791153803452751*n^32 + 2468552637980851499947584*n^33 + 167536461123588897837416*n^34 + 3927535896285273089184*n^35 + 246218365513296690316*n^36 + 4640273089678232064*n^37 + 269714108783157936*n^38 + 3986042964314664*n^39 + 215542329647711*n^40 + 2405227111584*n^41 + 121370670916*n^42 + 961331184*n^43 + 45396066*n^44 + 227424*n^45 + 10076*n^46 + 24*n^47 + n^48).

%F G.f.: 2*x*(1 + 24*x + 576*x^2 + 6624*x^3 + 76176*x^4 + 558624*x^5 + 4096576*x^6 + 21507024*x^7 + 112911876*x^8 + 451647504*x^9 + 1806590016*x^10 + 5720868384*x^11 + 18116083216*x^12 + 46584213984*x^13 + 119787978816*x^14 + 254549454984*x^15 + 540917591841*x^16 + 961631274384*x^17 + 1709566710016*x^18 + 2564350065024*x^19 + 3846525097536*x^20 + 4895577396864*x^21 + 6230734868736*x^22 + 6749962774464*x^23 + 7312459672336*x^24 + 6749962774464*x^25 + 6230734868736*x^26 + 4895577396864*x^27 + 3846525097536*x^28 + 2564350065024*x^29 + 1709566710016*x^30 + 961631274384*x^31 + 540917591841*x^32 + 254549454984*x^33 + 119787978816*x^34 + 46584213984*x^35 + 18116083216*x^36 + 5720868384*x^37 + 1806590016*x^38 + 451647504*x^39 + 112911876*x^40 + 21507024*x^41 + 4096576*x^42 + 558624*x^43 + 76176*x^44 + 6624*x^45 + 576*x^46 + 24*x^47 + x^48)/(1-x)^51. (End)

%t A103881[n_, k_]:= (n+1)*Binomial[n+k-1,k]*HypergeometricPFQ[{1-n,-n,1-k}, {2, 1-n - k}, 1];

%t A157074[n_]:= A103881[n, 25];

%t Table[A157074[n], {n, 50}] (* _G. C. Greubel_, Jan 27 2022 *)

%o (Sage)

%o def A103881(n,k): return sum( binomial(n+1, i)*binomial(k-1, i-1)*binomial(n-i+k, k) for i in (0..n) )

%o def A157074(n): return A103881(n, 25)

%o [A157074(n) for n in (1..50)] # _G. C. Greubel_, Jan 27 2022

%Y Cf. A103881, A156554.

%K nonn

%O 1,1

%A _R. H. Hardin_, Feb 22 2009