login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Shorthand for A157033, the smallest prime with 2^n digits.
4

%I #34 Jun 18 2024 10:01:11

%S 1,1,9,19,37,33,121,283,37,241,3259,2823,67017,13989,9523,34281,159007

%N Shorthand for A157033, the smallest prime with 2^n digits.

%F a(n) = A157033(n) - 10^(2^n - 1).

%p a:= n-> (t-> nextprime(t)-t)(10^(2^n-1)):

%p seq(a(n), n=0..10); # _Alois P. Heinz_, Mar 02 2022

%t f[n_] := NextPrime[ 10^(2^n-1)] - 10^(2^n-1); Table[ f@n, {n, 0, 12}] (* _Robert G. Wilson v_, Mar 17 2009 *)

%o (Python)

%o from sympy import nextprime

%o def A157034(n): return 1 if n == 0 else nextprime(10**(2**n-1))-10**(2**n-1) # _Chai Wah Wu_, Apr 16 2021

%Y Cf. A033873, A157033, A157036.

%K nonn,base,more

%O 0,3

%A _Lekraj Beedassy_, Feb 22 2009

%E a(8)-a(12) from _Robert G. Wilson v_, Mar 17 2009

%E a(13)-a(14) from _Ray Chandler_, Mar 22 2009

%E a(15) from _Jinyuan Wang_, Feb 24 2022

%E a(16) from _Michael S. Branicky_, Jun 18 2024