login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle T(n, k, q) = t(n,q)/(t(k,q)*t(n-k,q)), where t(n, k) = Product_{j=1..n} q-Pochhammer(j, k+1, k+1)/(1-(k+1))^j and t(n, 0) = n!, with q = 3, read by rows.
4

%I #6 Jan 09 2022 02:32:21

%S 1,1,1,1,5,1,1,105,105,1,1,8925,187425,8925,1,1,3043425,5432513625,

%T 5432513625,3043425,1,1,4154275125,2528644954460625,

%U 214934821129153125,2528644954460625,4154275125,1

%N Triangle T(n, k, q) = t(n,q)/(t(k,q)*t(n-k,q)), where t(n, k) = Product_{j=1..n} q-Pochhammer(j, k+1, k+1)/(1-(k+1))^j and t(n, 0) = n!, with q = 3, read by rows.

%D Steve Roman, The Umbral Calculus, Dover Publications, New York (1984), page 182.

%H G. C. Greubel, <a href="/A156952/b156952.txt">Rows n = 0..20 of the triangle, flattened</a>

%F T(n, k, q) = t(n,q)/(t(k,q)*t(n-k,q)), where t(n, k) = Product_{j=1..n} q-Pochhammer(j, k+1, k+1)/(1-(k+1))^j and t(n, 0) = n!, with q = 3.

%e Triangle begins as:

%e 1;

%e 1, 1;

%e 1, 5, 1;

%e 1, 105, 105, 1;

%e 1, 8925, 187425, 8925, 1;

%e 1, 3043425, 5432513625, 5432513625, 3043425, 1;

%t t[n_, k_]= If[k==0, n!, Product[QPochhammer[k+1, k+1, j]/(-k)^j, {j, n}]];

%t T[n_, k_, q_]= t[n, q]/(t[k, q]*t[n-k, q]);

%t Table[T[n,k,3], {n,0,10}, {k,0,n}]//Flatten (* modified by _G. C. Greubel_, Jan 08 2022 *)

%o (Sage)

%o from sage.combinat.q_analogues import q_pochhammer

%o def t(n,k): return factorial(n) if (k==0) else product( q_pochhammer(j, k+1, k+1)/(-k)^j for j in (1..n) )

%o def T(n,k,q): return t(n,q)/(t(k,q)*t(n-k,q))

%o flatten([[T(n,k,3) for k in (0..n)] for n in (0..12)]) # _G. C. Greubel_, Jan 08 2022

%Y Cf. A007318 (q=0), A156950 (q=1), A156951 (q=2), this sequence (q=3).

%Y Cf. A156953.

%K nonn,tabl

%O 0,5

%A _Roger L. Bagula_, Feb 19 2009

%E Edited by _G. C. Greubel_, Jan 08 2022