login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

General q-Narayana triangle sequence: T(n, k) = Product_{j=0..2} ( q_binomial(n+j, j+k, 3)/q_binomial(n+j-k, j, 3) ).
3

%I #6 Sep 08 2022 08:45:41

%S 1,1,1,1,40,1,1,1210,1210,1,1,33880,1024870,33880,1,1,925771,

%T 784128037,784128037,925771,1,1,25095280,580812061522,16262737722616,

%U 580812061522,25095280,1,1,678468820,425659125229240,325671796712891524

%N General q-Narayana triangle sequence: T(n, k) = Product_{j=0..2} ( q_binomial(n+j, j+k, 3)/q_binomial(n+j-k, j, 3) ).

%C Row sums are: {1, 2, 42, 2422, 1092632, 1570107618, 17424412036222, 652194913033179170, 189060566695044668933610, ...}.

%H G. C. Greubel, <a href="/A156917/b156917.txt">Rows n = 0..50 of triangle, flattened</a>

%F T(n, k) = Product_{j=0..2} ( q_binomial(n+j, j+k, 3)/q_binomial(n+j-k, j, 3) ). - _G. C. Greubel_, May 22 2019

%e Triangle begins as:

%e 1;

%e 1, 1;

%e 1, 40, 1;

%e 1, 1210, 1210, 1;

%e 1, 33880, 1024870, 33880, 1;

%e 1, 925771, 784128037, 784128037, 925771, 1;

%e 1, 25095280, 580812061522, 16262737722616, 580812061522, 25095280, 1;

%t (* First Program *)t[n_, m_]:= If[m==0, n!, Product[Sum[(m+1)^i, {i,0,k-1}], {k,1,n}]];

%t b[n_, k_, m_]:= If[n==0, 1, t[n, m]/(t[k, m]*t[n-k, m])];

%t c[n_, l_, m_]:= Product[b[n+k, l+k, 2]/b[n-l+k, k, 2], {k, 0, m}];

%t Table[c[n, k, 2], {n, 0, 10}, {k, 0, n}]//Flatten(* Second Program *)

%t T[n_, k_]:= Product[QBinomial[n+j,j+k,3]/QBinomial[n+j-k,j,3], {j,0,2}];

%t Table[T[n, k], {n, 0, 5}, {k, 0, n}]//Flatten (* _G. C. Greubel_, May 22 2019 *)

%o (PARI)

%o b(n,k,q) = prod(j=1, k, (1-q^(n-j+1))/(1-q^j));

%o T(n, k) = prod(j=0, 2, b(n+j, j+k, 3)/b(n-k+j, j, 3));

%o for(n=0, 12, for(k=0,n, print1(T(n,k), ", "))) \\ _G. C. Greubel_, May 22 2019

%o (Magma)

%o B:= func< n,k,q | (&*[(1-q^(n-j+1))/(1-q^j): j in [1..k]]) >;

%o T:= func< n,k | k eq 0 select 1 else B(n,k,3)*(&*[B(n+j, j+k, 3)/B(n-k+j,j,3): j in [1..2]]) >;

%o [[T(n,k) : k in [0..n]]: n in [0..12]]; // _G. C. Greubel_, May 22 2019

%o (Sage)

%o def T(n, k): return product((q_binomial(n+j, j+k, 3)/q_binomial(n+j-k, j, 3)) for j in (0..2))

%o [[T(n, k) for k in (0..n)] for n in (0..12)] # _G. C. Greubel_, May 22 2019

%Y Cf. A001263, A156916, this sequence, A156939.

%K nonn,tabl

%O 0,5

%A _Roger L. Bagula_, Feb 18 2009

%E Edited by _G. C. Greubel_, May 22 2019