%I #6 Sep 08 2022 08:45:41
%S 1,1,1,1,40,1,1,1210,1210,1,1,33880,1024870,33880,1,1,925771,
%T 784128037,784128037,925771,1,1,25095280,580812061522,16262737722616,
%U 580812061522,25095280,1,1,678468820,425659125229240,325671796712891524
%N General q-Narayana triangle sequence: T(n, k) = Product_{j=0..2} ( q_binomial(n+j, j+k, 3)/q_binomial(n+j-k, j, 3) ).
%C Row sums are: {1, 2, 42, 2422, 1092632, 1570107618, 17424412036222, 652194913033179170, 189060566695044668933610, ...}.
%H G. C. Greubel, <a href="/A156917/b156917.txt">Rows n = 0..50 of triangle, flattened</a>
%F T(n, k) = Product_{j=0..2} ( q_binomial(n+j, j+k, 3)/q_binomial(n+j-k, j, 3) ). - _G. C. Greubel_, May 22 2019
%e Triangle begins as:
%e 1;
%e 1, 1;
%e 1, 40, 1;
%e 1, 1210, 1210, 1;
%e 1, 33880, 1024870, 33880, 1;
%e 1, 925771, 784128037, 784128037, 925771, 1;
%e 1, 25095280, 580812061522, 16262737722616, 580812061522, 25095280, 1;
%t (* First Program *)t[n_, m_]:= If[m==0, n!, Product[Sum[(m+1)^i, {i,0,k-1}], {k,1,n}]];
%t b[n_, k_, m_]:= If[n==0, 1, t[n, m]/(t[k, m]*t[n-k, m])];
%t c[n_, l_, m_]:= Product[b[n+k, l+k, 2]/b[n-l+k, k, 2], {k, 0, m}];
%t Table[c[n, k, 2], {n, 0, 10}, {k, 0, n}]//Flatten(* Second Program *)
%t T[n_, k_]:= Product[QBinomial[n+j,j+k,3]/QBinomial[n+j-k,j,3], {j,0,2}];
%t Table[T[n, k], {n, 0, 5}, {k, 0, n}]//Flatten (* _G. C. Greubel_, May 22 2019 *)
%o (PARI)
%o b(n,k,q) = prod(j=1, k, (1-q^(n-j+1))/(1-q^j));
%o T(n, k) = prod(j=0, 2, b(n+j, j+k, 3)/b(n-k+j, j, 3));
%o for(n=0, 12, for(k=0,n, print1(T(n,k), ", "))) \\ _G. C. Greubel_, May 22 2019
%o (Magma)
%o B:= func< n,k,q | (&*[(1-q^(n-j+1))/(1-q^j): j in [1..k]]) >;
%o T:= func< n,k | k eq 0 select 1 else B(n,k,3)*(&*[B(n+j, j+k, 3)/B(n-k+j,j,3): j in [1..2]]) >;
%o [[T(n,k) : k in [0..n]]: n in [0..12]]; // _G. C. Greubel_, May 22 2019
%o (Sage)
%o def T(n, k): return product((q_binomial(n+j, j+k, 3)/q_binomial(n+j-k, j, 3)) for j in (0..2))
%o [[T(n, k) for k in (0..n)] for n in (0..12)] # _G. C. Greubel_, May 22 2019
%Y Cf. A001263, A156916, this sequence, A156939.
%K nonn,tabl
%O 0,5
%A _Roger L. Bagula_, Feb 18 2009
%E Edited by _G. C. Greubel_, May 22 2019