login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Number of distinct interlace polynomials q of connected graphs of order n.
0

%I #8 Sep 04 2018 08:02:58

%S 1,1,2,4,9,24,71,257,1186,7070,56698,614952

%N Number of distinct interlace polynomials q of connected graphs of order n.

%H M. Aigner and H. van der Holst, <a href="https://doi.org/10.1016/j.laa.2003.06.010">Interlace polynomials</a>, Linear Algebra Appl., 377 (2004), 11-30.

%H R. Arratia, B. Bollobas, and G. B. Sorkin, <a href="http://arxiv.org/abs/math.CO/0209045">The Interlace Polynomial of a Graph</a>, J. Combin. Theory Ser. B, 92 (2004), 199-233.

%H L. E. Danielsen and M. G. Parker, <a href="https://arxiv.org/abs/0804.2576">Interlace polynomials: Enumeration, unimodality, and connections to codes</a>, arXiv:0804.2576 [math.CO], 2008-2009.

%K hard,more,nonn

%O 1,3

%A Lars Eirik Danielsen (larsed(AT)ii.uib.no), Feb 16 2009