login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of distinct interlace polynomials q of connected graphs of order n.
0

%I #8 Sep 04 2018 08:02:58

%S 1,1,2,4,9,24,71,257,1186,7070,56698,614952

%N Number of distinct interlace polynomials q of connected graphs of order n.

%H M. Aigner and H. van der Holst, <a href="https://doi.org/10.1016/j.laa.2003.06.010">Interlace polynomials</a>, Linear Algebra Appl., 377 (2004), 11-30.

%H R. Arratia, B. Bollobas, and G. B. Sorkin, <a href="http://arxiv.org/abs/math.CO/0209045">The Interlace Polynomial of a Graph</a>, J. Combin. Theory Ser. B, 92 (2004), 199-233.

%H L. E. Danielsen and M. G. Parker, <a href="https://arxiv.org/abs/0804.2576">Interlace polynomials: Enumeration, unimodality, and connections to codes</a>, arXiv:0804.2576 [math.CO], 2008-2009.

%K hard,more,nonn

%O 1,3

%A Lars Eirik Danielsen (larsed(AT)ii.uib.no), Feb 16 2009