login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle T(n, k, m) = f(n, m)/(f(k, m)*f(n-k, m)), where T(0, k, m) = 1, f(n, k) = Product_{j=1..n} ( j!*((k+1)^j -1)/k ), f(n, 0) = n!, and m = 1, read by rows.
3

%I #7 Sep 08 2022 08:45:41

%S 1,1,1,1,6,1,1,42,42,1,1,360,2520,360,1,1,3720,223200,223200,3720,1,1,

%T 45360,28123200,241056000,28123200,45360,1,1,640080,4839004800,

%U 428597568000,428597568000,4839004800,640080,1,1,10281600,1096841088000,1184588375040000,12240746542080000,1184588375040000,1096841088000,10281600,1

%N Triangle T(n, k, m) = f(n, m)/(f(k, m)*f(n-k, m)), where T(0, k, m) = 1, f(n, k) = Product_{j=1..n} ( j!*((k+1)^j -1)/k ), f(n, 0) = n!, and m = 1, read by rows.

%H G. C. Greubel, <a href="/A156765/b156765.txt">Rows n = 0..30 of the triangle, flattened</a>

%F T(n, k, m) = f(n, m)/(f(k, m)*f(n-k, m)), where T(0, k, m) = 1, f(n, k) = Product_{j=1..n} ( j!*((k+1)^j -1)/k ), f(n, 0) = n!, and m = 1.

%F T(n, k, m) = f(n, m)/(f(k, m)*f(n-k, m)), where T(0, k, m) = 1, f(n, k) = (-1/k)^n * BarnesG(n+2) * q-Pochhammer(k+1, k+1, n) and m = 1. - _G. C. Greubel_, Jun 19 2021

%e Triangle begins as:

%e 1;

%e 1, 1;

%e 1, 6, 1;

%e 1, 42, 42, 1;

%e 1, 360, 2520, 360, 1;

%e 1, 3720, 223200, 223200, 3720, 1;

%e 1, 45360, 28123200, 241056000, 28123200, 45360, 1;

%e 1, 640080, 4839004800, 428597568000, 428597568000, 4839004800, 640080, 1;

%t (* First program *)

%t b[n_, k_]:= If[k==0, n!, Product[j!*((k+1)^j -1)/k, {j, n}]];

%t T[n_, k_, m_]:= If[n==0, 1, b[n,m]/(b[k,m]*b[n-k,m])];

%t Table[T[n, k, 1], {n,0,12}, {k,0,n}]//Flatten (* modified by _G. C. Greubel_, Jun 19 2021 *)

%t (* Second program *)

%t f[n_, k_]:= If[k==0, n!, (-1)^n*BarnesG[n+2] QPochhammer[k+1, k+1, n]/k^n];

%t T[n_, k_, m_]:= If[n==0, 1, f[n,m]/(f[k,m]*f[n-k,m])];

%t Table[T[n, k, 1], {n,0,12}, {k,0,n}]//Flatten (* _G. C. Greubel_, Jun 19 2021 *)

%o (Magma)

%o f:= func< n,k | n eq 0 select 1 else k eq 0 select Factorial(n) else (&*[Factorial(j)*((k+1)^j-1): j in [1..n]])/k^n >;

%o T:= func< n,k,m | n eq 0 select 1 else f(n,m)/(f(k,m)*f(n-k,m)) >;

%o [T(n,k,1): k in [0..n], n in [0..12]]; // _G. C. Greubel_, Jun 19 2021

%o (Sage)

%o from sage.combinat.q_analogues import q_pochhammer

%o @CachedFunction

%o def f(n,k): return factorial(n) if (k==0) else (-1/k)^n*product( factorial(j) for j in (1..n) )*q_pochhammer(n,k+1,k+1)

%o def T(n,k,m): return 1 if (n==0) else f(n,m)/(f(k,m)*f(n-k,m))

%o flatten([[T(n,k,1) for k in (0..n)] for n in (0..12)]) # _G. C. Greubel_, Jun 19 2021

%Y Cf. A007318 (m=0), this sequence (m=1), A156766 (m=2), A156767 (m=3).

%K nonn,tabl

%O 0,5

%A _Roger L. Bagula_, Feb 15 2009

%E Edited by _G. C. Greubel_, Jun 19 2021