Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #59 Jan 20 2024 09:05:56
%S 1,3,5,6495105,848629545,1117175145,2544265305,3147056235,3366991695,
%T 3472109835,3621922845,3861518805,4447794915,4848148485,5415281745,
%U 5693877405,6804302445,7525056375,7602256605,9055691835,9217432215
%N Odd numbers that are not of the form p + 2^a + 2^b, a, b > 0, p prime.
%C Crocker shows that this sequence is infinite.
%C All members above 5 found so far (up to 2.5 * 10^11) are divisible by 255 = 3 * 5 * 17, and many are divisible by 257. I conjecture that all members of this sequence greater than 5 are divisible by 255. This implies that all odd numbers (greater than 7) are the sum of a prime and at most three positive powers of two.
%C Pan shows that, for every c > 1, a(n) << x^c. More specifically, there are constants C,D > 0 such that there are at least Dx/exp(C log x log log log log x/log log log x) members of this sequence up to x. - _Charles R Greathouse IV_, Apr 11 2016
%C All terms > 5 are numbers k > 3 such that k - 2^n is a de Polignac number (A006285) for every n > 0 with 2^n < k. Are there numbers K such that |K - 2^n| is a Riesel number (A101036) for every n > 0? If so, ||K - 2^n| - 2^m| is composite for every pair m,n > 0, by the dual Riesel conjecture. - _Thomas Ordowski_, Jan 06 2024
%H Giovanni Resta, <a href="/A156695/b156695.txt">Table of n, a(n) for n = 1..233</a> (terms < 10^12)
%H Roger Crocker, "<a href="http://projecteuclid.org/euclid.pjm/1102971271">On the sum of a prime and of two powers of two</a>", Pacific Journal of Mathematics 36:1 (1971), pp. 103-107.
%H Roger Crocker, <a href="/A156695/a156695.pdf">Some counter-examples in the additive theory of numbers</a>, Master's thesis (Ohio State University), 1962.
%H Hao Pan, <a href="http://arxiv.org/abs/0905.3809">On the integers not of the form p + 2^a + 2^b</a>. arXiv:0905.3809 [math.NT], 2009.
%H Zhi-Wei Sun, <a href="http://math.nju.edu.cn/~zwsun/MSPT.htm">Mixed sums of primes and other terms</a> (2009-2010).
%e Prime factorization of terms:
%e F_0 = 3, F_1 = 5, F_2 = 17, F_3 = 257 are Fermat numbers (cf. A000215)
%e 6495105 = 3 * 5 * 17 * 25471
%e 848629545 = 3 * 5 * 17 * 461 * 7219
%e 1117175145 = 3 * 5 * 17 * 257 * 17047
%e 2544265305 = 3^2 * 5 * 17 * 257 * 12941
%e 3147056235 = 3^2 * 5 * 17 * 257 * 16007
%e 3366991695 = 3 * 5 * 17 * 83 * 257 * 619
%e 3472109835 = 3 * 5 * 17 * 257 * 52981
%e 3621922845 = 3 * 5 * 17^2 * 257 * 3251
%e 3861518805 = 3^3 * 5 * 17 * 257 * 6547
%e 4447794915 = 3^3 * 5 * 17 * 257 * 7541
%e 4848148485 = 3^4 * 5 * 17 * 704161
%e 5415281745 = 3 * 5 * 17 * 21236399
%e 5693877405 = 3^2 * 5 * 17 * 257 * 28961
%e 6804302445 = 3^2 * 5 * 17 * 53 * 257 * 653
%e 7525056375 = 3^2 * 5^3 * 17 * 257 * 1531
%e 7602256605 = 3 * 5 * 17 * 257 * 311 * 373
%e 9055691835 = 3 * 5 * 17 * 257 * 138181
%e 9217432215 = 3^2 * 5 * 17 * 173 * 257 * 271
%o (PARI) is(n)=if(n%2==0,return(0)); for(a=1,log(n)\log(2), for(b=1,a, if(isprime(n-2^a-2^b),return(0)))); 1 \\ _Charles R Greathouse IV_, Nov 27 2013
%o (Python)
%o from itertools import count, islice
%o from sympy import isprime
%o def A156695_gen(startvalue=1): # generator of terms >= startvalue
%o for n in count(max(startvalue+(startvalue&1^1),1),2):
%o l = n.bit_length()-1
%o for a in range(l,0,-1):
%o c = n-(1<<a)
%o for b in range(min(a,l-1),0,-1):
%o if isprime(c-(1<<b)):
%o break
%o else:
%o continue
%o break
%o else:
%o yield n
%o A156695_list = list(islice(A156695_gen(),4)) # _Chai Wah Wu_, Nov 29 2023
%Y Cf. A006285, A118955, A232565, A337487.
%K nonn,hard,nice
%O 1,2
%A _Charles R Greathouse IV_, Feb 13 2009
%E Factorizations added by _Daniel Forgues_, Jan 20 2011