login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A156680
Consider primitive Pythagorean triangles (A^2 + B^2 = C^2, gcd (A, B) = 1, A < B<C); sequence gives values of B-A, sorted to correspond to increasing A (A020884(n)).
2
1, 7, 17, 7, 31, 49, 23, 71, 97, 47, 127, 161, 1, 79, 199, 241, 119, 287, 337, 17, 167, 391, 449, 223, 23, 511, 577, 41, 287, 647, 41, 721, 359, 799, 881, 73, 439, 967, 1057, 7, 527, 1151, 89, 1249, 113, 623, 1351, 1457, 727, 119, 1567, 1681, 31, 161, 839, 1799, 1921
OFFSET
1,2
COMMENTS
This sequence contains the differences in the legs of the primitive Pythagorean triples, sorted by shortest side (A020884). If a difference appears once then it must appear infinitely often, for if (m,n) generates a primitive triple with Abs(b-a)=d then so too does (2m+n,m). This corresponds to applying Hall's A matrix, and hence all horizontal lines in the Pythagorean family tree will contain families of primitive triples whose legs differ by the same amount. The sorted differences that can occur are in A058529.
REFERENCES
Barning, F. J. M.; On Pythagorean and quasi-Pythagorean triangles and a generation process with the help of unimodular matrices. (Dutch), Math. Centrum Amsterdam Afd. Zuivere Wisk. ZW-001 (1963).
LINKS
A. Hall, Genealogy of Pythagorean Triads, The Mathematical Gazette, Vol. 54, No. 390, (December 1970), pp. 377-379.
FORMULA
a(n) = A156678(n) - A020884(n).
EXAMPLE
As the first four primitive Pythagorean triples (ordered by increasing A) are (3,4,5), (5,12,13), (7,24,25) and (8,15,17), then a(1)=4-3=1, a(2)=12-5=7, a(3)=24-7=17 and a(4)=15-8=7.
MATHEMATICA
PrimitivePythagoreanTriplets[n_]:=Module[{t={{3, 4, 5}}, i=4, j=5}, While[i<n, If[GCD[i, j]==1, h=Sqrt[i^2+j^2]; If[IntegerQ[h] && j<n, AppendTo[t, {i, j, h}]]; ]; If[j<n, j+=2, i++; j=i+1]]; t]; k=38; data1=PrimitivePythagoreanTriplets[2k^2+2k+1]; data2=Select[data1, #[[1]]<=2k+1 &]; #[[2]]-#[[1]] &/@data2
CROSSREFS
KEYWORD
easy,nice,nonn
AUTHOR
Ant King, Feb 15 2009
STATUS
approved