login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Characteristic function of Sophie Germain primes.
21

%I #36 Nov 06 2022 07:47:59

%S 0,0,1,1,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,

%T 0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

%U 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

%N Characteristic function of Sophie Germain primes.

%H Reinhard Zumkeller, <a href="/A156660/b156660.txt">Table of n, a(n) for n = 0..10000</a>

%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Sophie_Germain_prime">Sophie Germain prime</a>

%H <a href="/index/Ch#char_fns">Index entries for characteristic functions</a>

%F a(n) = if n and also 2*n+1 is prime then 1 else 0.

%F a(A005384(n)) = 1; a(A138887(n)) = 0; a(A053176(n)) = 0.

%F A156874(n) = Sum_{k=1..n} a(k). - _Reinhard Zumkeller_, Feb 18 2009

%F a(n) = A010051(n)*A010051(2*n+1).

%F For n>1 a(n) = floor((floor(phi(n)/(n-1)) + floor(phi(2*n+1)/(2*n)))/2). - _Enrique Pérez Herrero_, Apr 28 2012

%F For n>1 a(n) = floor(phi(2*n^2+n)/(2*n^2-2*n)). - _Enrique Pérez Herrero_, May 02 2012

%o (Haskell)

%o a156660 n = fromEnum $ a010051 n == 1 && a010051 (2 * n + 1) == 1

%o -- _Reinhard Zumkeller_, May 01 2012

%o (PARI) a(n)=isprime(n)&&isprime(2*n+1) \\ _Felix Fröhlich_, Aug 11 2014

%Y Cf. A156659.

%Y Cf. A005384, A156874, A092816.

%K nonn

%O 0,1

%A _Reinhard Zumkeller_, Feb 13 2009

%E Definition corrected by _Daniel Forgues_, Aug 04 2009