login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 13*(100^(n+1) - 1)/99.
2

%I #30 Sep 04 2024 18:55:18

%S 13,1313,131313,13131313,1313131313,131313131313,13131313131313,

%T 1313131313131313,131313131313131313,13131313131313131313,

%U 1313131313131313131313,131313131313131313131313

%N a(n) = 13*(100^(n+1) - 1)/99.

%H Vincenzo Librandi, <a href="/A156641/b156641.txt">Table of n, a(n) for n = 0..100</a>

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (101,-100).

%F G.f.: 13*x / ( (1-100*x)*(1-x) ).

%F a(n) = 13*A094028(n-1).

%F E.g.f.: (13/99)*(-exp(x) + 100*exp(100*x)). - _G. C. Greubel_, Feb 28 2021

%e For n=0, a(0)=13; n=1, a(1)=1313; n=2, a(2)=131313; n=3, a(3)=13131313.

%p A156641:= n-> (13/99)*(10^(2*n+2) -1); seq(A156641(n), n=0..15); # _G. C. Greubel_, Feb 28 2021

%t Table[FromDigits[PadLeft[{1,3},2n,{1,3}]],{n,15}] (* _Harvey P. Dale_, Jul 23 2011 *)

%o (Magma) [13*(100^(n+1)-1)/99: n in [0..15]];

%o (Sage) [(13/99)*(10^(2*n+2) -1) for n in (0..15)] # _G. C. Greubel_, Feb 28 2021

%o (PARI) a(n) = 100^(n+1)\99*13; \\ _Kevin Ryde_, Mar 05 2022

%Y Cf. A094028, A037582.

%K nonn,easy

%O 0,1

%A _Vincenzo Librandi_, Feb 15 2009

%E Offset changed from 1 to 0