|
|
A156593
|
|
A q-Stirling 2nd triangle sequence:q=2;m=1; t(n,k)=If[m == 0, n!, Product[Sum[(-1)^i*StirlingS2[ k - 1, i]*(m + 1)^i, {i, 0, k - 1}], {k, 1, n}]]; b(n,k,m)=If[n == 0, 1, t[n, m]/(t[k, m]*t[n - k, m])].
|
|
0
|
|
|
1, 1, 1, 1, -2, 1, 1, 2, 2, 1, 1, 2, -2, 2, 1, 1, -6, 6, 6, -6, 1, 1, -14, -42, -42, -42, -14, 1, 1, 26, 182, -546, -546, 182, 26, 1, 1, 178, -2314, 16198, -48594, 16198, -2314, 178, 1, 1, 90, -8010, -104130, 728910, 728910, -104130, -8010, 90, 1, 1, -2382, 107190
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,5
|
|
COMMENTS
|
Row sums are:
{1, 2, 0, 6, 4, 2, -152, -674, -20468, 1233722, 556704368,...}.
On the sequence only q=2 and q=3 are Integers,
the rest have a few rational terms.
|
|
LINKS
|
Table of n, a(n) for n=0..57.
|
|
FORMULA
|
q=2;m=1;
t(n,k)=If[m == 0, n!, Product[Sum[(-1)^i*StirlingS2[ k - 1, i]*(m + 1)^i, {i, 0, k - 1}], {k, 1, n}]];
b(n,k,m)=If[n == 0, 1, t[n, m]/(t[k, m]*t[n - k, m])].
|
|
EXAMPLE
|
{1},
{1, 1},
{1, -2, 1},
{1, 2, 2, 1},
{1, 2, -2, 2, 1},
{1, -6, 6, 6, -6, 1},
{1, -14, -42, -42, -42, -14, 1},
{1, 26, 182, -546, -546, 182, 26, 1},
{1, 178, -2314, 16198, -48594, 16198, -2314, 178, 1},
{1, 90, -8010, -104130, 728910, 728910, -104130, -8010, 90, 1},
{1, -2382, 107190, 9539910, 124018830, 289377270, 124018830, 9539910, 107190, -2382, 1}
|
|
MATHEMATICA
|
t[n_, m_] = If[m == 0, n!, Product[Sum[(-1)^i* StirlingS2[k - 1, i]*(m + 1)^i, {i, 0, k - 1}], {k, 1, n}]];
b[n_, k_, m_] = f[n == 0, 1, t[n, m]/(t[k, m]*t[n - k, m])];
Table[Flatten[Table[Table[b[n, k, m], {k, 0, n}], {n, 0, 10}]], {m, 0, 15}]
|
|
CROSSREFS
|
Sequence in context: A143187 A143209 A163994 * A206498 A184848 A184720
Adjacent sequences: A156590 A156591 A156592 * A156594 A156595 A156596
|
|
KEYWORD
|
sign,tabl,uned
|
|
AUTHOR
|
Roger L. Bagula, Feb 10 2009
|
|
STATUS
|
approved
|
|
|
|