%I #12 Sep 04 2024 18:57:43
%S 1,7,8,8,7,8,8,5,0,5,3,7,9,6,0,6,5,4,2,9,5,7,2,5,5,9,6,7,0,4,7,6,9,4,
%T 8,1,6,7,6,9,4,2,2,5,5,4,5,1,1,7,1,6,5,5,3,5,5,5,0,7,8,1,4,6,9,5,2,4,
%U 9,2,3,8,1,9,4,0,0,4,6,5,3,8,6,3,0,6,0,3,2,7,5,7,9,4,6,2,6,7,7,0,7,5,4,3,5
%N Decimal expansion of (27 + 10*sqrt(2))/23.
%C Lim_{n -> infinity} a(n)/a(n-1) = (27+10*sqrt(2))/23 for n mod 3 = {1, 2}, b = A118337, A156567.
%C Lim_{n -> infinity} a(n)/a(n-1) = (3+2*sqrt(2))/((27+10*sqrt(2))/23)^2 for n mod 3 = 0, b = A118337, A156567.
%H G. C. Greubel, <a href="/A156571/b156571.txt">Table of n, a(n) for n = 1..10000</a>
%e (27 + 10*sqrt(2))/23 = 1.78878850537960654295...
%t RealDigits[(27 + 10*Sqrt[2])/23, 10, 100][[1]] (* _G. C. Greubel_, Jan 28 2018 *)
%o (PARI) (27+10*sqrt(2))/23 \\ _G. C. Greubel_, Jan 27 2018
%o (Magma) (27+10*Sqrt(2))/23; // _G. C. Greubel_, Jan 27 2018
%Y Cf. A002193 (decimal expansion of sqrt(2)), A156035 (decimal expansion of 3+2*sqrt(2)), A156164 (decimal expansion of 17+12*sqrt(2)).
%K cons,nonn
%O 1,2
%A _Klaus Brockhaus_, Feb 10 2009