login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Primes of the form 2^n-5.
5

%I #28 Sep 04 2024 18:57:21

%S 3,11,59,251,1019,4091,262139,1048571,67108859,4294967291,68719476731,

%T 72057594037927931,73786976294838206459,

%U 332306998946228968225951765070086139,1361129467683753853853498429727072845819,1427247692705959881058285969449495136382746619

%N Primes of the form 2^n-5.

%C If p = 2^n-5 is prime, then p*2^(n-1) is abundant with abundance 4 (see A088832). - _Davide Rotondo_, Oct 25 2020

%H Vincenzo Librandi, <a href="/A156560/b156560.txt">Table of n, a(n) for n = 1..28</a>

%F a(n) = 2^A059608(n) - 5.

%t Select[Table[2^n-5,{n,2,400}],PrimeQ] (* _Vincenzo Librandi_, Jul 26 2012 *)

%o (Magma) [ a: n in [2..500] | IsPrime(a) where a is 2^n-5 ];

%o (PARI) for(n=1,300,q=2^n-5;if(isprime(q),print(q))) /* gives more terms in <10secs */ \\ _Joerg Arndt_, Dec 03 2010

%Y Corresponding n's are in A059608.

%Y Cf. A088832.

%K nonn

%O 1,1

%A _Vincenzo Librandi_, Feb 10 2009

%E Edited by _Zak Seidov_