Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #12 Sep 08 2022 08:45:41
%S 1,1,3,1,6,25,1,13,76,350,1,28,242,1430,6951,1,59,783,6023,35659,
%T 179487,1,122,2527,25782,187092,1108128,5715424,1,249,8070,110960,
%U 995595,6963711,41250694,216627840,1,504,25456,476626,5337322,44302510,302087532,1789534102,9528822303
%N A triangle sequence related to the Eulerian numbers of the second kind: t(n,m) = Sum_{i=0..m}(-1)^(m-i)*binomial(n-i-1, m-i)*Stirling2(n+i+1, i+1).
%C Row sums are: {1, 4, 32, 440, 8652, 222012, 7039076, 265957120, 11670586356, 583472429540, 32744436653656,...}
%H G. C. Greubel, <a href="/A156363/b156363.txt">Rows n=0..100 of triangle, flattened</a>
%H L. Smiley, <a href="http://www.math.uaa.alaska.edu/~smiley/BSfront.html">Completion of a Rational Function Sequence of Carlitz</a>, page 3.
%F t(n,m) = Sum_{i=0..m}(-1)^(m-i)*binomial(n-i-1, m-i)*Stirling2(n+i+1, i+1).
%e Triangle begins as:
%e 1;
%e 1, 3;
%e 1, 6, 25;
%e 1, 13, 76, 350;
%e 1, 28, 242, 1430, 6951;
%e 1, 59, 783, 6023, 35659, 179487;
%e 1, 122, 2527, 25782, 187092, 1108128, 5715424;
%e 1, 249, 8070, 110960, 995595, 6963711, 41250694, 216627840;
%t t[n_, m_] = Sum[(-1)^(m-i)*Binomial[n-i-1, m-i]*StirlingS2[n+i+1, i+1], {i, 0, m}]; Table[Table[t[n, m], {m, 0, n}], {n, 0, 10}]//Flatten
%o (PARI) {t(n,m) = sum(j=0,m, (-1)^(m-j)*binomial(n-j-1, m-j)*stirling(n+j +1, j+1,2))};
%o for(n=0,10, for(m=0,n, print1(t(n,m), ", "))) \\ _G. C. Greubel_, Feb 24 2019
%o (Magma) [[(&+[(-1)^(m-j)*Binomial(n-j-1, m-j)*StirlingSecond(n+j+1, j+1): j in [0..m]]): m in [0..n]]: n in [0..10]]; // _G. C. Greubel_, Feb 24 2019
%o (Sage) [[sum((-1)^(m-j)*binomial(n-j-1, m-j)*stirling_number2(n+j+1, j+1) for j in (0..m)) for m in (0..n)] for n in (0..10)] # _G. C. Greubel_, Feb 24 2019
%Y Cf. A048993 (Stirling2), A008277, A156139, A156364.
%K nonn,tabl
%O 0,3
%A _Roger L. Bagula_, Feb 08 2009