The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A156363 A triangle sequence related to the Eulerian numbers of the second kind: t(n,m) = Sum_{i=0..m}(-1)^(m-i)*binomial(n-i-1, m-i)*Stirling2(n+i+1, i+1). 2

%I

%S 1,1,3,1,6,25,1,13,76,350,1,28,242,1430,6951,1,59,783,6023,35659,

%T 179487,1,122,2527,25782,187092,1108128,5715424,1,249,8070,110960,

%U 995595,6963711,41250694,216627840,1,504,25456,476626,5337322,44302510,302087532,1789534102,9528822303

%N A triangle sequence related to the Eulerian numbers of the second kind: t(n,m) = Sum_{i=0..m}(-1)^(m-i)*binomial(n-i-1, m-i)*Stirling2(n+i+1, i+1).

%C Row sums are: {1, 4, 32, 440, 8652, 222012, 7039076, 265957120, 11670586356, 583472429540, 32744436653656,...}

%H G. C. Greubel, <a href="/A156363/b156363.txt">Rows n=0..100 of triangle, flattened</a>

%H L. Smiley, <a href="http://www.math.uaa.alaska.edu/~smiley/BSfront.html">Completion of a Rational Function Sequence of Carlitz</a>, page 3.

%F t(n,m) = Sum_{i=0..m}(-1)^(m-i)*binomial(n-i-1, m-i)*Stirling2(n+i+1, i+1).

%e Triangle begins as:

%e 1;

%e 1, 3;

%e 1, 6, 25;

%e 1, 13, 76, 350;

%e 1, 28, 242, 1430, 6951;

%e 1, 59, 783, 6023, 35659, 179487;

%e 1, 122, 2527, 25782, 187092, 1108128, 5715424;

%e 1, 249, 8070, 110960, 995595, 6963711, 41250694, 216627840;

%t t[n_, m_] = Sum[(-1)^(m-i)*Binomial[n-i-1, m-i]*StirlingS2[n+i+1, i+1], {i, 0, m}]; Table[Table[t[n, m], {m, 0, n}], {n, 0, 10}]//Flatten

%o (PARI) {t(n,m) = sum(j=0,m, (-1)^(m-j)*binomial(n-j-1, m-j)*stirling(n+j +1, j+1,2))};

%o for(n=0,10, for(m=0,n, print1(t(n,m), ", "))) \\ _G. C. Greubel_, Feb 24 2019

%o (MAGMA) [[(&+[(-1)^(m-j)*Binomial(n-j-1, m-j)*StirlingSecond(n+j+1, j+1): j in [0..m]]): m in [0..n]]: n in [0..10]]; // _G. C. Greubel_, Feb 24 2019

%o (Sage) [[sum((-1)^(m-j)*binomial(n-j-1, m-j)*stirling_number2(n+j+1, j+1) for j in (0..m)) for m in (0..n)] for n in (0..10)] # _G. C. Greubel_, Feb 24 2019

%Y Cf. A048993 (Stirling2), A008277, A156139, A156364.

%K nonn,tabl

%O 0,3

%A _Roger L. Bagula_, Feb 08 2009

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 24 17:36 EST 2020. Contains 338616 sequences. (Running on oeis4.)