Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #14 Nov 02 2024 12:31:04
%S 1,1,8,21,77,199,661,1663,4852,12382,33289,82877,213026,518109,
%T 1279852,3053404,7312985,17093793,39952528,91661695,209709116,
%U 473095589,1062567288,2359804486,5214774263,11415904502,24860918943,53709881911
%N G.f.: A(x) = exp( Sum_{n>=1} sigma(n^3)*x^n/n ), a power series in x with integer coefficients.
%C Compare to g.f. of partition numbers: exp( Sum_{n>=1} sigma(n)*x^n/n ), where sigma(n) = A000203(n) is the sum of the divisors of n.
%C Euler transform of A160889. - _Vaclav Kotesovec_, Nov 01 2024
%H Seiichi Manyama, <a href="/A156304/b156304.txt">Table of n, a(n) for n = 0..5000</a>
%F a(n) = (1/n)*Sum_{k=1..n} sigma(k^3) * a(n-k) for n>0, with a(0)=1.
%F log(a(n)) ~ 4*Pi*c^(1/4)*n^(3/4) / (3^(5/4)*5^(1/4)), where c = A330595 = Product_{primes p} (1 + 1/p^2 + 1/p^3) = 1.74893299784324530303390699... - _Vaclav Kotesovec_, Nov 01 2024
%e G.f.: A(x) = 1 + x + 8*x^2 + 21*x^3 + 77*x^4 + 199*x^5 + 661*x^6 +...
%e log(A(x)) = x + 15*x^2/2 + 40*x^3/3 + 127*x^4/4 + 156*x^5/5 + 600*x^6/6 +...
%o (PARI) {a(n)=polcoeff(exp(sum(m=1,n,sigma(m^3)*x^m/m)+x*O(x^n)),n)}
%o (PARI) {a(n)=if(n==0,1,(1/n)*sum(k=1,n,sigma(k^3)*a(n-k)))}
%Y Cf. A000203 (sigma), A000041 (partitions), A156303, A202993, A203557.
%Y Cf. A160889, A175926, A330595.
%K nonn
%O 0,3
%A _Paul D. Hanna_, Feb 08 2009