OFFSET
1,2
COMMENTS
REFERENCES
T. Myers and L. Shapiro, Some applications of the sequence 1, 5, 22, 93, 386, ... to Dyck paths and ordered trees, Congressus Numerant., 204 (2010), 93-104.
FORMULA
R(k,j)=(-1)^(k+j)*Binomial(2k,k+j), for 1<= j<=k, and 0 otherwise.
EXAMPLE
R(2,1)=-4, R(3,3)=1, R(4,2)=28.
Here is Pascal's triangle with the entries in the present triangle preceded by a *:
......................1
.....................1, 1
...................1, 2,*1
.................1, 3, 3, 1
................1, 4, 6,*4,*1
..............1, 5, 10, 10, 5, 1
............1, 6, 15, 20,*15,*6,*1
..........1, 7, 21, 35, 35, 21, 7, 1
........1, 8, 28, 56, 70,*56,*28,*8,*1
...
MATHEMATICA
R[m_] := Flatten[Table[(-1)^(k + j) Binomial[2 k, k + j], {k, 1, m}, {j, 1, k}]]
CROSSREFS
KEYWORD
AUTHOR
Hartmut F. W. Hoft, Feb 07 2009
EXTENSIONS
Edited by N. J. A. Sloane, Apr 05 2011
STATUS
approved