login
A156290
Triangle read by rows: alternating binomial coefficients with signs.
1
1, -4, 1, 15, -6, 1, -56, 28, -8, 1, 210, -120, 45, -10, 1, -792, 495, -220, 66, -12, 1, 3003, -2002, 1001, -364, 91, -14, 1, -11440, 8008, -4368, 1820, -560, 120, -16, 1, 43758, -31824, 18564, -8568, 3060, -816, 153, -18, 1, -167960, 125970, -77520
OFFSET
1,2
COMMENTS
Alternating binomial coefficients in the closed form expression for sequence A156289.
The Example lines below show the connection with Pascal's triangle A007318.
REFERENCES
T. Myers and L. Shapiro, Some applications of the sequence 1, 5, 22, 93, 386, ... to Dyck paths and ordered trees, Congressus Numerant., 204 (2010), 93-104.
FORMULA
R(k,j)=(-1)^(k+j)*Binomial(2k,k+j), for 1<= j<=k, and 0 otherwise.
EXAMPLE
R(2,1)=-4, R(3,3)=1, R(4,2)=28.
Here is Pascal's triangle with the entries in the present triangle preceded by a *:
......................1
.....................1, 1
...................1, 2,*1
.................1, 3, 3, 1
................1, 4, 6,*4,*1
..............1, 5, 10, 10, 5, 1
............1, 6, 15, 20,*15,*6,*1
..........1, 7, 21, 35, 35, 21, 7, 1
........1, 8, 28, 56, 70,*56,*28,*8,*1
...
MATHEMATICA
R[m_] := Flatten[Table[(-1)^(k + j) Binomial[2 k, k + j], {k, 1, m}, {j, 1, k}]]
CROSSREFS
Coefficient factor in elements of sequence A156289, the inverse of lower triangular matrix A156308.
Cf. A007318.
Sequence in context: A229468 A319039 A107873 * A080419 A095307 A159764
KEYWORD
easy,sign,tabl
AUTHOR
Hartmut F. W. Hoft, Feb 07 2009
EXTENSIONS
Edited by N. J. A. Sloane, Apr 05 2011
STATUS
approved