login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A156290 Triangle read by rows: alternating binomial coefficients with signs. 1
1, -4, 1, 15, -6, 1, -56, 28, -8, 1, 210, -120, 45, -10, 1, -792, 495, -220, 66, -12, 1, 3003, -2002, 1001, -364, 91, -14, 1, -11440, 8008, -4368, 1820, -560, 120, -16, 1, 43758, -31824, 18564, -8568, 3060, -816, 153, -18, 1, -167960, 125970, -77520 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Alternating binomial coefficients in the closed form expression for sequence A156289.

The Example lines below show the connection with Pascal's triangle A007318.

REFERENCES

T. Myers and L. Shapiro, Some applications of the sequence 1, 5, 22, 93, 386, ... to Dyck paths and ordered trees, Congressus Numerant., 204 (2010), 93-104.

LINKS

Table of n, a(n) for n=1..48.

FORMULA

R(k,j)=(-1)^(k+j)*Binomial(2k,k+j), for 1<= j<=k, and 0 otherwise.

EXAMPLE

R(2,1)=-4, R(3,3)=1, R(4,2)=28.

Here is Pascal's triangle with the entries in the present triangle preceded by a *:

......................1

.....................1, 1

...................1, 2,*1

.................1, 3, 3, 1

................1, 4, 6,*4,*1

..............1, 5, 10, 10, 5, 1

............1, 6, 15, 20,*15,*6,*1

..........1, 7, 21, 35, 35, 21, 7, 1

........1, 8, 28, 56, 70,*56,*28,*8,*1

...

MATHEMATICA

R[m_] := Flatten[Table[(-1)^(k + j) Binomial[2 k, k + j], {k, 1, m}, {j, 1, k}]]

CROSSREFS

Coefficient factor in elements of sequence A156289, the inverse of lower triangular matrix A156308.

Cf. A007318.

Sequence in context: A229468 A319039 A107873 * A080419 A095307 A159764

Adjacent sequences:  A156287 A156288 A156289 * A156291 A156292 A156293

KEYWORD

easy,sign,tabl

AUTHOR

Hartmut F. W. Hoft, Feb 07 2009

EXTENSIONS

Edited by N. J. A. Sloane, Apr 05 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 6 12:35 EDT 2022. Contains 357264 sequences. (Running on oeis4.)