login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = A000002(3*n-2), where A000002 is the Kolakoski sequence.
3

%I #7 Dec 16 2017 05:31:38

%S 1,1,1,1,1,1,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,

%T 1,1,1,1,1,1,1,1,2,1,1,2,2,2,2,1,2,2,1,1,2,2,2,2,1,1,2,1,1,1,1,1,1,1,

%U 1,1,1,1,1,1,1,1,1,2,2,1,1,1,1,2,1,1,2,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1

%N a(n) = A000002(3*n-2), where A000002 is the Kolakoski sequence.

%H Antti Karttunen, <a href="/A156264/b156264.txt">Table of n, a(n) for n = 1..12000</a>

%o (PARI)

%o up_to = 12000;

%o v000002 = [1, 2, 2]; m=3; while(length(v000002) < 3*(1+up_to), v000002 = concat( v000002, vector(v000002[m], i, 2-m%2)); m++); \\ after PARI-code in A000002.

%o A000002(n) = v000002[n];

%o A156264(n) = A000002((3*n)-2); \\ _Antti Karttunen_, Dec 15 2017

%Y Cf. A000002, A074264.

%K nonn

%O 1,7

%A _Benoit Cloitre_, Feb 07 2009