%I #13 Jul 18 2021 12:19:20
%S 7,18,286,3010,32890,769230,3333330,159189030,16015883940,
%T 477463360374,21643407275490,1148540321999070,18489352726664820,
%U 4561561662153109614,71000485538666794110,14440652550858108745170,927869754030522488795610
%N Smallest heptagonal number with n distinct prime factors.
%C a(18) <= 150849873309136386205130310. - _Donovan Johnson_, Feb 15 2012
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/HeptagonalNumber.html">Heptagonal Numbers</a>.
%e a(9) = 16015883940 = 2^2*3^2*5*7*17*19*23*29*59. 16015883940 is the smallest heptagonal number with 9 distinct prime factors.
%o (Python)
%o from sympy import primefactors
%o def A000566(n): return n*(5*n-3)//2
%o def a(n):
%o k = 1
%o while len(primefactors(A000566(k))) != n: k += 1
%o return A000566(k)
%o print([a(n) for n in range(1, 9)]) # _Michael S. Branicky_, Jul 18 2021
%o (Python) # faster version using heptagonal structure
%o from sympy import primefactors
%o def A000566(n): return n*(5*n-3)//2
%o def A000566_distinct_factors(n):
%o pf1 = primefactors(n)
%o pf2 = primefactors(5*n-3)
%o combined = set(pf1) | set(pf2)
%o return len(combined) if n%4 == 0 or (5*n-3)%4 == 0 else len(combined)-1
%o def a(n):
%o k = 1
%o while A000566_distinct_factors(k) != n: k += 1
%o return A000566(k)
%o print([a(n) for n in range(1, 10)]) # _Michael S. Branicky_, Jul 18 2021
%Y Cf. A000566, A076551, A156236, A156237, A156239.
%K nonn
%O 1,1
%A _Donovan Johnson_, Feb 07 2009
%E a(17) from _Donovan Johnson_, Jul 02 2011