login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle T(n, k) = (2^k/3)*Q(k, n), with T(0, 0) = -2, where Q(k, n) = (1/2)*( -Q(k-1, n) + 3*p(2, k-1)^n), and p(q, n) = Product_{j=1..n} ( (1-x^k)/(1-x) ), read by rows.
2

%I #10 Jan 02 2022 07:26:18

%S -2,-2,3,-2,3,-1,-2,3,-1,109,-2,3,-1,325,1555523,-2,3,-1,973,32671835,

%T 49621794478165,-2,3,-1,2917,686126051,15630874866123949,

%U 27744919164118690798376051,-2,3,-1,8749,14408699579,4923725784550050421,270929135785330782929292449579,2134369240927848351630724472718209102550421

%N Triangle T(n, k) = (2^k/3)*Q(k, n), with T(0, 0) = -2, where Q(k, n) = (1/2)*( -Q(k-1, n) + 3*p(2, k-1)^n), and p(q, n) = Product_{j=1..n} ( (1-x^k)/(1-x) ), read by rows.

%C A triangle sequence based on Carlitz q-Eulerian formulas (see ref).

%H G. C. Greubel, <a href="/A156220/b156220.txt">Rows n = 0..25 of the triangle, flattened</a>

%H L. Carlitz, <a href="https://projecteuclid.org/journals/duke-mathematical-journal/volume-15/issue-4/q-Bernoulli-numbers-and-polynomials/10.1215/S0012-7094-48-01588-9.short">q-Bernoulli numbers and polynomials</a>, Duke Math. J. Volume 15, Number 4 (1948), 987-1000.

%F T(n, k) = (2^k/3)*Q(k, n), with T(0, 0) = -2, where Q(k, n) = (1/2)*( -Q(k-1, n) + 3*p(2, k-1)^n), and p(q, n) = Product_{j=1..n} ( (1-q^k)/(1-q) ).

%e Triangle begins as:

%e -2;

%e -2, 3;

%e -2, 3, -1;

%e -2, 3, -1, 109;

%e -2, 3, -1, 325, 1555523;

%e -2, 3, -1, 973, 32671835, 49621794478165;

%e -2, 3, -1, 2917, 686126051, 15630874866123949, 27744919164118690798376051;

%t Q[x_, n_]:= Q[x, n]= If[n==0, 1, If[x==0, -6, (1/2)*(-Q[x-1, n] + 3*((-1)^(k-1)*QPochhammer[2, 2, x-1])^n)]];

%t T[n_, k_]:= If[n==0, -2, (2^k/3)*Q[k, n]];

%t Table[T[n, k], {n,0,10}, {k,0,n}]//Flatten (* modified by _G. C. Greubel_, Dec 31 2021 *)

%o (Sage)

%o from sage.combinat.q_analogues import q_pochhammer

%o @CachedFunction

%o def Q(k,n):

%o if (n==0): return 1

%o elif (k==0): return -6

%o else: return (1/2)*( -Q(k-1,n) + 3*(-1)^(n*(k-1))*(q_pochhammer(k-1,2,2))^n)

%o def T(n,k): return -2 if (n==0) else (2^k/3)*Q(k,n)

%o flatten([[T(n,k) for k in (0..n)] for n in (0..10)]) # _G. C. Greubel_, Dec 31 2021

%Y Cf. A156222.

%K sign,tabl

%O 0,1

%A _Roger L. Bagula_, Feb 06 2009

%E Edited by _G. C. Greubel_, Dec 31 2021