login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A156143
P_n(1)*Q_n(1) (see A155100 and A104035), defining Q_{-1} = 0.
1
1, 2, 12, 176, 4560, 184832, 10786752, 856856576, 88901310720, 11673832128512, 1892490366446592, 371226769045323776, 86660664498577428480, 23742637220974655700992, 7544062284452303484076032, 2751743952477326731196235776, 1142005572999693488899887267840, 535040063912570172630126949302272
OFFSET
-1,2
FORMULA
a(n) ~ 2^(4*n + 17/2) * n^(2*n+3) / (Pi^(2*n+3) * exp(2*n)). - Vaclav Kotesovec, Dec 08 2020
MATHEMATICA
p[n_, u_] := D[Tan[x], {x, n}] /. Tan[x] -> u /. Sec[x] -> Sqrt[1+u^2] // Expand; p[-1, u_] = 1; t[n_, k_] := t[n, k] = k*t[n-1, k-1]+(k+1)*t[n-1, k+1]; t[0, 0] = 1; t[0, _] = 0; t[-1, _] = 0; q[n_, u_] := Sum[t[n, k]*u^k, {k, 0, n}]; a[n_] := p[n, 1]*q[n, 1]; Table[a[n], {n, 0, 17}] (* Jean-François Alcover, Feb 05 2014 *)
CROSSREFS
Sequence in context: A059522 A271857 A113149 * A007129 A125861 A334175
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Nov 06 2009
STATUS
approved