login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A156062
Riordan array (1/(1-x^4), x/(1-x^4)).
1
1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 2, 0, 0, 0, 1, 0, 0, 3, 0, 0, 0, 1, 0, 0, 0, 4, 0, 0, 0, 1, 1, 0, 0, 0, 5, 0, 0, 0, 1, 0, 3, 0, 0, 0, 6, 0, 0, 0, 1, 0, 0, 6, 0, 0, 0, 7, 0, 0, 0, 1, 0, 0, 0, 10, 0, 0, 0, 8, 0, 0, 0, 1, 1, 0, 0, 0, 15, 0, 0, 0, 9, 0, 0, 0, 1, 0, 4, 0, 0, 0, 21, 0, 0, 0, 10, 0, 0, 0
OFFSET
0,17
COMMENTS
Row sums are A003269(n+1). Diagonal sums are the aerated Fibonacci numbers; thus
F(n+1)=sum{k=0..n, C((n+k)/2,k)*(1+(-1)^(n-k))/2}. Inverse is A156064.
FORMULA
Triangle T(n,k)=C((n+3k)/4,k)((1+(-1)^(n-k))/2+cos(pi*(n-k)/2))/2.
EXAMPLE
Triangle begins
1,
0, 1,
0, 0, 1,
0, 0, 0, 1,
1, 0, 0, 0, 1,
0, 2, 0, 0, 0, 1,
0, 0, 3, 0, 0, 0, 1,
0, 0, 0, 4, 0, 0, 0, 1,
1, 0, 0, 0, 5, 0, 0, 0, 1,
0, 3, 0, 0, 0, 6, 0, 0, 0, 1,
0, 0, 6, 0, 0, 0, 7, 0, 0, 0, 1,
0, 0, 0, 10, 0, 0, 0, 8, 0, 0, 0, 1,
1, 0, 0, 0, 15, 0, 0, 0, 9, 0, 0, 0, 1
Production matrix of this array is
0, 1,
0, 0, 1,
0, 0, 0, 1,
1, 0, 0, 0, 1,
0, 1, 0, 0, 0, 1,
0, 0, 1, 0, 0, 0, 1,
0, 0, 0, 1, 0, 0, 0, 1,
-3, 0, 0, 0, 1, 0, 0, 0, 1,
0, -3, 0, 0, 0, 1, 0, 0, 0, 1,
0, 0, -3, 0, 0, 0, 1, 0, 0, 0, 1,
0, 0, 0, -3, 0, 0, 0, 1, 0, 0, 0, 1,
15, 0, 0, 0, -3, 0, 0, 0, 1, 0, 0, 0, 1,
0, 15, 0, 0, 0, -3, 0, 0, 0, 1, 0, 0, 0, 1,
0, 0, 15, 0, 0, 0, -3, 0, 0, 0, 1, 0, 0, 0, 1,
0, 0, 0, 15, 0, 0, 0, -3, 0, 0, 0, 1, 0, 0, 0, 1,
-91, 0, 0, 0, 15, 0, 0, 0, -3, 0, 0, 0, 1, 0, 0, 0, 1
where 1,1,-3,15,-91,612,.... is (-1)^(n-1)*C(4n-1,n)/(4n-1) (see A006632).
CROSSREFS
Sequence in context: A369927 A328037 A193426 * A156064 A158757 A294890
KEYWORD
easy,nonn,tabl
AUTHOR
Paul Barry, Oct 20 2009
STATUS
approved