login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Let m = A002445(n); then a(n) = largest member of A001359 (the lesser twin primes sequence) <= m.
0

%I #4 May 01 2013 21:13:44

%S 5,29,41,2729,137,14321,281,3404309,33329,641,4206929,1366529,281189,

%T 7589,625169,5009,2081,63029,5477,2657,2801,15269,19469,25997,49169,

%U 11489,23909,289109,14009,129629,32909,3254729,88577309,93809,412589

%N Let m = A002445(n); then a(n) = largest member of A001359 (the lesser twin primes sequence) <= m.

%H Wikimedia Commons, <a href="http://commons.wikimedia.org/wiki/File:OEIS_A156053.svg">Alternate plot</a>

%o (PARI) \\ uses Pari functions ispseudoprime, denominator, and list \\ tp2cnt =count of adjacent, unique twin primes (lower) \\ p2cnt = count of unique adjacent primes \\ N = Bernoulli # maxx= max N idx*=list pointers \\ u=array of adj. unique TP u2=array of adj. unique primes cnt=0;pcnt=0;n=1;opcnt=0;plcnt=0;phcnt=0;tpcnt=0;otpcnt=0; tp2cnt=0;p2cnt=0; limmit=429000001; \\4E8 idx=1; \\init idx2=1;

%o \\init if(maxx<2,maxx=2); if(maxx>200000,maxx=200000); print ("enforced n max = ",maxx); u=listcreate(500); \\unique entries < 10% TP u2=listcreate(5000); \\unique entries < 50% while(n<maxx+1, if(bernfrac(n)==0,n++) ; \\guard against 0 division m=abs(denominator(bernfrac(n)) ); p=m-1;q=m+1;

%o \\ we check to either side cnt++; if( ispseudoprime(p)==1, plcnt++ ); if( ispseudoprime(q)==1, phcnt++ ); if( ispseudoprime(q)==1 || ispseudoprime(p)==1, pcnt++ ); if( ispseudoprime(q)==1 && ispseudoprime(p)==1, tpcnt++ ); if( tpcnt>otpcnt, print("TP! @ ",n," ",q, " "

%o \\IF.FOR,IF if(p>0,listput(u,p,idx);tp2cnt++ ); if(p>0,idx++) ); \\ end IF if( pcnt>opcnt, if(p>limmit,p=0); \\lower if(ispseudoprime(p)==0,p=0); if(p>0, for(z=1,idx2-1, if(p==u2[z],p=0); ); ); if(p>0,listput(u2,p,idx2);p2cnt++); if(p>0,idx2++); if(q>limmit,q=0);

%o \\upper if(ispseudoprime(q)==0,q=0); if(q>0, for(z=1,idx2-1, if(q==u2[z],q=0); ); ); if(q>0,listput(u2,q,idx2);p2cnt++); if(q>0,idx2++) ); \\ end IF opcnt=pcnt;otpcnt=tpcnt; n++ ); \\end WHILE if(cnt>0, print(2.*p2cnt/cnt) ); \\reflect every other (n.z.) print ("TP count = ",tp2cnt ); print ("enforced n max = ",maxx);

%Y Cf. A002445

%K easy,nonn

%O 1,1

%A _Bill McEachen_, Feb 02 2009

%E Edited by _N. J. A. Sloane_, Oct 21 2009