login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A156036
Numerators in expansion of log(z^2/(cosh(z)-cos(z))).
3
0, -1, 1, -691, 3617, -174611, 236364091, -3392780147, 7709321041217, -26315271553053477373, 261082718496449122051, -2530297234481911294093, 5609403368997817686249127547, -61628132164268458257532691681, 354198989901889536240773677094747, -1215233140483755572040304994079820246041491
OFFSET
0,4
REFERENCES
V. Mangulis, Handbook of Series, Academic Press, 1965, p. 76.
FORMULA
log(z^2/(cosh(z)-cos(z))) = Sum_{ n >= 1 } (-1)^n*B_{2n}*(2z^2)^(2n)/((4n)!2n).
a(n)=Numerator((-1)^n * Zeta(4n)/(Zeta(2n)*Pi^(2n)). - Enrique Pérez Herrero, Jun 20 2012
EXAMPLE
log(z^2/(cosh(z)-cos(z))) = -(1/360)*z^4+(1/302400)*z^8-(691/122594472000)*z^12+(3617/333456963840000)*z^16+...
CROSSREFS
Cf. A156032.
Sequence in context: A046753 A033563 A231273 * A029814 A135843 A130662
KEYWORD
sign,frac
AUTHOR
N. J. A. Sloane, Oct 31 2009
STATUS
approved