login
Numbers k such that k^1 + k^2 + k^3 + k^4 -+ 1 are twin primes.
3

%I #16 Sep 08 2022 08:45:41

%S 1,2,12,30,44,50,63,74,110,165,177,222,239,254,327,492,519,804,942,

%T 954,1007,1343,1352,1520,1770,2375,2450,2658,2795,2945,2994,3075,3332,

%U 3527,3548,3803,3915,3935,4025,4653,4704,4785,4808,4862,5270,5310,5364,5370

%N Numbers k such that k^1 + k^2 + k^3 + k^4 -+ 1 are twin primes.

%H Amiram Eldar, <a href="/A156021/b156021.txt">Table of n, a(n) for n = 1..10000</a>

%e 2 is a term since 2 + 2^2 + 2^3 + 2^4 - 1 = 29 and 2 + 2^2 + 2^3 + 2^4 + 1 = 31 are twin primes.

%t lst={};Do[p=(n^1+n^2+n^3+n^4);If[PrimeQ[p-1]&&PrimeQ[p+1],AppendTo[lst,n]],{n,8!}];lst

%o (Magma) [n: n in [1..6*10^3] | IsPrime(n^4+n^3+n^2+n-1) and IsPrime(n^4+n^3+n^2+n+1)]; // _Vincenzo Librandi_, Dec 26 2015

%Y Cf. A125964, A156018.

%K nonn,easy

%O 1,2

%A _Vladimir Joseph Stephan Orlovsky_, Feb 01 2009