Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #14 Dec 06 2015 23:07:51
%S 31,73,241,379,2341,3571,6121,9661,20359,47881,51949,60763,65521,
%T 119953,135151,291721,305119,378289,394201,427351,537841,689041,
%U 736921,761671,921889,1202041,1271161,1306693,1494313,1533871,1742161,1785961,1875751
%N Primes of the form n^2 + (n+1)^3.
%C For n^2 + (n+1)^3 to be a prime, n cannot be 1 modulo 3 whereas all a(n) are definitely 1 modulo 3. - Avik Roy (avik_3.1416(AT)yahoo.co.in), Feb 13 2009
%H Zak Seidov, <a href="/A155933/b155933.txt">Table of n, a(n) for n = 1..2000</a>
%F a(n) = m^2 + (m+1)^3 where m = A128958(n). - _Zak Seidov_, Dec 15 2013
%e 31 is in the sequence since 31 is prime and 31 = 2^2 + 3^3.
%t lst={};Do[p=(n+2)^2+(n+3)^3;If[PrimeQ[p],AppendTo[lst,p]],{n,0,2*5!}];lst...and/or...lst={};Do[p=n^2+(n+1)^3;If[PrimeQ[p],AppendTo[lst,p]],{n,0,2*5!}];lst
%Y Cf. A128958.
%K nonn
%O 1,1
%A _Vladimir Joseph Stephan Orlovsky_, Jan 30 2009
%E Definition corrected by _Zak Seidov_, Jul 05 2013