Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #18 Sep 08 2022 08:45:41
%S 1,4,22,130,790,4870,30274,189202,1186702,7461982,47007034,296527162,
%T 1872479350,11833642006,74833075570,473463268642,2996771766046,
%U 18974162475598,120167557286314,761214481604554,4822871486667526,30561172252753030,193682023673424226,1227594333811376050,7781431761074125486
%N A 'Morgan Voyce' transform of A007854.
%C Hankel transform is 3^n*2^binomial(n+1, 2).
%C Image of A007854 by Riordan array (1/(1-x), x/(1-x)^2).
%H Vincenzo Librandi, <a href="/A155862/b155862.txt">Table of n, a(n) for n = 0..200</a>
%F G.f.: 2/(3*sqrt(1-6*x+x^2) + x - 1).
%F G.f.: 1/(1 -x -3*x/(1 -x -x/(1 -x -x/(1 -x -x/(1 -x -x/(1- ... (continued fraction).
%F a(n) = Sum_{k=0..n} binomial(n+k, 2*k)*A007854(k) = Sum_{k=0..n} A085478(n,k) * A007854(k).
%F 2*n*a(n) +(18-25*n)*a(n-1) + 41*(2*n-3)*a(n-2) +(57-25*n)*a(n-3) +2*(n-3)*a(n-4) =0. - _R. J. Mathar_, Nov 14 2011
%F a(n) ~ (1+3/sqrt(17)) * (13+3*sqrt(17))^n / 2^(2*n+2). - _Vaclav Kotesovec_, Feb 01 2014
%t CoefficientList[Series[2/(3*Sqrt[1-6*x+x^2]+x-1), {x, 0, 20}], x] (* _Vaclav Kotesovec_, Feb 01 2014 *)
%o (Magma) R<x>:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( 2/(3*Sqrt(1-6*x+x^2) +x -1) )); // _G. C. Greubel_, Jun 04 2021
%o (Sage)
%o def A155862_list(prec):
%o P.<x> = PowerSeriesRing(ZZ, prec)
%o return P( 2/(3*sqrt(1-6*x+x^2) +x-1) ).list()
%o A155862_list(30) # _G. C. Greubel_, Jun 04 2021
%Y Cf. A001850, A007854, A085478.
%K easy,nonn
%O 0,2
%A _Paul Barry_, Jan 29 2009