login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A155820
Primes of the form prime(k)^2 + 2*prime(k-1) where prime(k) is the k-th prime number.
1
13, 31, 59, 191, 887, 1019, 1931, 2903, 5471, 8087, 9587, 19031, 23099, 33119, 57587, 80651, 129587, 168083, 188351, 327179, 359987, 414731, 678971, 846383, 898691, 910103, 984047, 1040387, 1044479, 1132091, 1331711, 1411331, 1444787, 1517819, 1669259, 1909907
OFFSET
1,1
LINKS
EXAMPLE
prime(4)=7, prime(3)=5; 7^2+2*5=59, a prime. Hence 59 is a term.
MAPLE
count:= 0: q:= 2: R:= NULL:
while count < 100 do
p:= q; q:= nextprime(q);
v:= q^2 + 2*p;
if isprime(v) then count:= count+1; R:= R, v; fi;
od:
R; # Robert Israel, Aug 22 2023
MATHEMATICA
list = {}; Do[m = Prime[k]^2 + 2*Prime[k - 1]; If[PrimeQ[m], AppendTo[list, m]], {k, 2, 300}]; list (* Vaclav Kotesovec, Feb 14 2019 *)
CROSSREFS
Cf. A000040.
Sequence in context: A166143 A065768 A379223 * A242231 A330855 A268927
KEYWORD
nonn
AUTHOR
Avik Roy (avik_3.1416(AT)yahoo.co.in), Jan 28 2009
EXTENSIONS
More terms from Vaclav Kotesovec, Feb 14 2019
Changed offset to 1 by Vaclav Kotesovec, Feb 14 2019
STATUS
approved