The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A155583 The sequence is a factorization of a designed multi-bifurcative triangle sequence: t(n,m)=A155582(n,m); f(n, m) = If[m <= Floor[n/2], f(m, 1)*f(n - m, 1)*t(n, m)]. 0
 1, 1, 2, 6, 12, 28, 36, 36, 216, 216, 720, 1512, 1512, 2520, 12096, 12096, 12096, 10080, 60480, 108864, 108864, 54432, 604800, 604800, 1088640, 544320, 326592 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Row sums are: {1, 1, 2, 6, 40, 72, 1152, 5544, 46368, 332640, 3169152,...}. LINKS FORMULA t(n,m)=A155582(n,m); f(n, m) = If[m <= Floor[n/2], f(m, 1)*f(n - m, 1)*t(n, m)]. EXAMPLE Factor sequence is: {1}, {1}, {2}, {6}, {12, 28}, {36, 36}, {216, 216, 720}, {1512, 1512, 2520}, {12096, 12096, 12096, 10080}, {60480, 108864, 108864, 54432}, {604800, 604800, 1088640, 544320, 326592} MATHEMATICA Clear[t, a, b, c, n, m, f, x]; a[0] = 1; a[n_] := a[n] = ((4*n - 2)/(n + 1))*a[n - 1]; b[0] = 1; b[n_] := b[n] = If[IntegerQ[((3*n - 2)/(n + 1))*b[n - 1]], ((3*n - 2)/(n + 1))*b[n - 1], If[IntegerQ[((4*n - 2)/( n + 1))*b[n - 1]], ((4*n - 2)/(n + 1))*b[n - 1], n*b[n - 1]]] c[0] = 1; c[n_] := c[n] = If[IntegerQ[((6*n - 4)/(n + 1))*c[n - 1]], ((6*n - 4)/(n + 1))*c[n - 1], If[IntegerQ[((4*n - 2)/(n + 1))*c[n - 1]], ((4*n - 2)/(n + 1))* c[n - 1], n*c[n - 1]]]; t[n_, m_] := t[n, m] = If[IntegerQ[a[n]/(a[m]*a[n - m])], a[n]/(a[m]*a[n - m]), If[IntegerQ[b[n]/(b[m]*b[ n - m])], b[n]/(b[ m]*b[n - m]), If[IntegerQ[c[n]/(c[m]* c[n - m])], c[n]/(c[m]*c[n - m]), Binomial[n, m]]]]; f[0, 1] = 1; f[1, 1] = 1; f[2, 1] = 2; f[n_, m_] := f[n, m] = If[m <= Floor[n/2], f[m, 1]*f[n - m, 1]*t[n, m]]; a = Join[{{1}}, {{1}}, Table[Table[f[n, m], {m, 1, Floor[n/2]}], {n, 2, 10}]]; Flatten[%] CROSSREFS Cf. A155582 Sequence in context: A335712 A166963 A188476 * A140853 A185961 A290674 Adjacent sequences:  A155580 A155581 A155582 * A155584 A155585 A155586 KEYWORD nonn,uned AUTHOR Roger L. Bagula, Jan 24 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 19 03:38 EDT 2021. Contains 345125 sequences. (Running on oeis4.)