login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 43^(2*n+1).
2

%I #34 Sep 08 2022 08:45:40

%S 43,79507,147008443,271818611107,502592611936843,929293739471222707,

%T 1718264124282290785243,3177070365797955661914307,

%U 5874403106360420018879553643,10861771343660416614908294685907,20083415214428110320965436874242043

%N a(n) = 43^(2*n+1).

%C 43*a(n) is a square, hence also a(n)^3+(6*a(n))^3+(11*a(n))^3 = 36*43*a(n)^3 is a square.

%H Vincenzo Librandi, <a href="/A155477/b155477.txt">Table of n, a(n) for n = 0..100</a>

%H <a href="/index/Rec#order_01">Index entries for linear recurrences with constant coefficients</a>, signature (1849).

%F G.f.: 43/(1-1849*x). - _Bruno Berselli_, Feb 26 2012

%t 43^(2 Range[0, 11] + 1) (* _Harvey P. Dale_, Oct 03 2011 *)

%t Table[43^(2 n + 1), {n, 0, 20}] (* _Vincenzo Librandi_, Oct 01 2015 *)

%o (Magma) [43^(2*n+1): n in [0..15]]; // _Vincenzo Librandi_, Oct 01 2015

%o (PARI) vector(20, n, n--; 43^(2*n+1)) \\ _Altug Alkan_, Oct 01 2015

%Y Bisection of A009987 (powers of 43).

%K nonn,easy

%O 0,1

%A _Vincenzo Librandi_, Jan 23 2009

%E More terms from _Harvey P. Dale_, Oct 03 2011

%E Offset from 1 to 0 by _Vincenzo Librandi_, Feb 26 2012