The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A155464 a(n) = 7*a(n-1) - 7*a(n-2) + a(n-3) for n > 2; a(0) = 0, a(1) = 51, a(2) = 340. 5
0, 51, 340, 2023, 11832, 69003, 402220, 2344351, 13663920, 79639203, 464171332, 2705388823, 15768161640, 91903581051, 535653324700, 3122016367183, 18196444878432, 106056652903443, 618143472542260, 3602804182350151 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
lim_{n -> infinity} a(n+1)/a(n) = 3+2*sqrt(2).
LINKS
FORMULA
a(n) = 6*a(n-1) - a(n-2) + 34 for n > 1; a(0) = 0, a(1) = 51.
a(n) = ((1+sqrt(2))*(3+2*sqrt(2))^n + (1-sqrt(2))*(3-2*sqrt(2))^n -2)*(17/4).
G.f.: 17*x*(3-x)/((1-x)*(1-6*x+x^2)).
a(n) = 17*(A002203(2*n+1) - 2)/4. - G. C. Greubel, Aug 21 2018
MATHEMATICA
LinearRecurrence[{7, -7, 1}, {0, 51, 340}, 30] (* Harvey P. Dale, Jun 10 2013 *)
Table[17*(LucasL[2*n+1, 2] - 2)/4, {n, 0, 50}] (* G. C. Greubel, Aug 21 2018 *)
PROG
(PARI) {m=20; v=concat([0, 51, 340], vector(m-3)); for(n=4, m, v[n]=7*v[n-1]-7*v[n-2]+v[n-3]); v}
(Magma) I:=[0, 51, 340]; [n le 3 select I[n] else 7*Self(n-1) - 7*Self(n-2) + Self(n-3): n in [1..30]]; // G. C. Greubel, Aug 21 2018
CROSSREFS
First trisection of A118120. Equals 17*A001652.
Cf. A155465, A155466, A156035 (decimal expansion of 3+2*sqrt(2)).
Sequence in context: A251344 A245362 A219145 * A165087 A359026 A152579
KEYWORD
nonn,easy
AUTHOR
Klaus Brockhaus, Jan 30 2009
EXTENSIONS
Comment and recursion formula added, cross-references edited by Klaus Brockhaus, Sep 23 2009
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 22 19:48 EDT 2024. Contains 372758 sequences. (Running on oeis4.)