login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 5*a(n-1)+16*a(n-2), n>1 ; a(0)=0, a(1)=1.
0

%I #28 Jan 29 2024 08:54:32

%S 0,1,5,41,285,2081,14965,108121,780045,5630161,40631525,293240201,

%T 2116305405,15273370241,110227737685,795512612281,5741206864365,

%U 41434236118321,299030490421445,2158100230000361,15574988996744925,112404548663730401,811222567266570805

%N a(n) = 5*a(n-1)+16*a(n-2), n>1 ; a(0)=0, a(1)=1.

%C a(n+1) for n >= 0 is the number of compositions (ordered partitions) of n into parts 1 of 5 sorts and parts 2 of 16 sorts. - _Joerg Arndt_, Jan 29 2024

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (5,16).

%F G.f.: x/(1-5*x-16*x^2).

%t LinearRecurrence[{5, 16}, {0, 1}, 25] (* _Paolo Xausa_, Jan 29 2024 *)

%Y Cf. A015568 (binomial transform).

%K nonn,easy

%O 0,3

%A _Philippe Deléham_, Jan 22 2009

%E Regularized: a(0) set to 0. - _R. J. Mathar_, Apr 01 2011

%E a(21)-a(22) from _Paolo Xausa_, Jan 29 2024