login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A155209
G.f.: A(x) = exp( Sum_{n>=1} (4^n - 1)^n * x^n/n ), a power series in x with integer coefficients.
5
1, 3, 117, 83691, 1057319541, 224085796087563, 785909534807110163445, 45253898808490419883694669835, 42530103981310660908750359650219091445, 649533982980850199063905669772208004250784346635
OFFSET
0,2
COMMENTS
More generally, for m integer, exp( Sum_{n>=1} (m^n + y)^n * x^n/n ) is a power series in x and y with integer coefficients.
EXAMPLE
G.f.: A(x) = 1 + 3*x + 117*x^2 + 83691*x^3 + 1057319541*x^4 +...
log(A(x)) = 3*x + 15^2*x^2/2 + 63^3*x^3/3 + 255^4*x^4/4 + 1023^5*x^5/5 +...
PROG
(PARI) {a(n)=polcoeff(exp(sum(m=1, n+1, (4^m-1)^m*x^m/m)+x*O(x^n)), n)}
CROSSREFS
Sequence in context: A097642 A009095 A326995 * A037117 A283883 A173053
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 04 2009
STATUS
approved