Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #17 Jan 03 2024 08:47:34
%S 1,9,99,1080,11790,128700,1404900,15336000,167409000,1827450000,
%T 19948590000,217760400000,2377089900000,25948503000000,
%U 283255929000000,3092044320000000,33753002490000000,368450468100000000
%N a(n) = 10*a(n-1) + 10*a(n-2), with a(0)=1, a(1)=9, a(2)=99.
%H G. C. Greubel, <a href="/A155157/b155157.txt">Table of n, a(n) for n = 0..950</a>
%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (10,10).
%F G.f.: (1-x-x^2)/(1-10*x-10*x^2).
%F From _G. C. Greubel_, Mar 20 2021: (Start)
%F a(n) = ([n=0] + 9*A057093(n))/10.
%F a(n) = (1/10)*([n=0] + 9*(-i*sqrt(10))^n*ChebyshevU(n, i*sqrt(10)/2)). (End)
%p 1,seq( simplify(9*(-I*sqrt(10))^n*ChebyshevU(n, I*sqrt(10)/2)/10), n=1..30); # _G. C. Greubel_, Mar 20 2021
%t LinearRecurrence[{10,10},{1,9,99},20] (* _Harvey P. Dale_, Jan 27 2016 *)
%o (Magma) [1]cat[n le 2 select 9*(10*n-9) else 10*(Self(n-1) + Self(n-2)): n in [1..30]]; // _G. C. Greubel_, Mar 20 2021
%o (Sage) [1]+[(9/10)*(-i*sqrt(10))^n*chebyshev_U(n, i*sqrt(10)/2) for n in (1..30)] # _G. C. Greubel_, Mar 20 2021
%Y Sequences of the form a(n) = m*(a(n-1) + a(n-2)) with a(0)=1, a(1) = m-1, a(2) = m^2 -1: A155020 (m=2), A155116 (m=3), A155117 (m=4), A155119 (m=5), A155127 (m=6), A155130 (m=7), A155132 (m=8), A155144 (m=9), this sequence (m=10).
%Y Cf. A057093.
%K nonn
%O 0,2
%A _Philippe Deléham_, Jan 21 2009