Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #31 Sep 08 2022 08:45:40
%S 23,30,76,83,129,136,182,189,235,242,288,295,341,348,394,401,447,454,
%T 500,507,553,560,606,613,659,666,712,719,765,772,818,825,871,878,924,
%U 931,977,984,1030,1037,1083,1090,1136,1143,1189,1196,1242,1249,1295
%N Numbers that are 23 or 30 (mod 53).
%C Also, numbers k such that k^2 == -1 (mod 53).
%C The first pair (a,b) is such that a+b=p=53, a*b=p*h+1, with h<=(p-1)/4; subsequent pairs are given as (a+kp, b+kp), k=1,2,3...
%H Vincenzo Librandi, <a href="/A155107/b155107.txt">Table of n, a(n) for n = 1..1000</a>
%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (1,1,-1).
%F a(n) = 23*(-1)^(n+1) + 53*floor(n/2). - _M. F. Hasler_, Jun 16 2010
%F a(2k+1) = 53 k + a(1), a(2k) = 53 k - a(1), with a(1) = 23 = A002314(7) since 53 = A002144(7). - _M. F. Hasler_, Jun 16 2010
%F a(n) = a(n-2) + 53 for all n > 2. - _M. F. Hasler_, Jun 16 2010
%F From _R. J. Mathar_, Feb 19 2009: (Start)
%F a(n) = a(n-1) + a(n-2) - a(n-3) = 53*n/2 - 53/4 - 39*(-1)^n/4.
%F G.f.: x*(23 + 7*x + 23*x^2)/((1+x)*(1-x)^2). (End)
%t Select[Range[1300], PowerMod[#, 2, 53] == 52 &] (* or *) LinearRecurrence[ {1, 1, -1}, {23, 30, 76}, 50] (* _Harvey P. Dale_, Nov 30 2011 *)
%t CoefficientList[Series[(23 + 7 x + 23 x^2)/((1 + x) (1 - x)^2), {x, 0, 100}], x] (* _Vincenzo Librandi_, Apr 24 2014 *)
%o (PARI) A155107(n)=n\2*53-23*(-1)^n /* _M. F. Hasler_, Jun 16 2010 */
%o (Magma) I:=[23,30,76]; [n le 3 select I[n] else Self(n-1)+Self(n-2)-Self(n-3): n in [1..50]] /* or */ [-23*(-1)^n+53*Floor(n/2): n in [1..50]]; // _Vincenzo Librandi_, Apr 24 2014
%Y Cf. numbers n such that n^2 == -1 (mod p), where p is a prime of the form 4k+1: A047221 (p=5), A155086 (p=13), A155095 (p=17), A155096 (p=29), A155097 (p=37), A155098 (p=41), this sequence (p=53), A241406 (p=61), A241407 (p=73), A241520 (p=89), A241521 (p=97).
%K nonn,easy
%O 1,1
%A _Vincenzo Librandi_, Jan 20 2009
%E Terms checked & minor edits by _M. F. Hasler_, Jun 16 2010