OFFSET
1,3
COMMENTS
List of pairs (a, b) such that (a, b*sqrt(2)) = (1 + sqrt(2))^n. In the commutative ring Z[sqrt(2)], the set { +/- (1 + sqrt(2))^n} is a multiplicative group. - Michel Lagneau, Nov 27 2015
The fractions a(2*n-1)/a(2*n) are successive convergents of the simple continued fraction of sqrt(2). - Alexander Fraebel, Sep 03 2020
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 1..1000
Index entries for linear recurrences with constant coefficients, signature (0,2,0,1).
FORMULA
a(n) = 2*a(n-2) + a(n-4) for n > 4. - R. J. Mathar, Feb 19 2009
a(2k+1)^2 - 2*a(2k+2)^2 = +-1. - Vincenzo Librandi, Mar 14 2012
G.f.: x*(1+x+x^2)/(1-2*x^2-x^4). - Bruno Berselli, Mar 14 2012
MATHEMATICA
LinearRecurrence[{0, 2, 0, 1}, {1, 1, 3, 2}, 40] (* Vincenzo Librandi, Mar 14 2012 *)
NestList[{#[[1]]+2#[[2]], Total[#]}&, {1, 1}, 20]//Flatten (* Harvey P. Dale, Nov 21 2020 *)
PROG
(Haskell)
import Data.List (transpose)
a155046 n = a155046_list !! n
a155046_list = concat $ transpose [tail a001333_list, tail a000129_list]
-- Reinhard Zumkeller, Jan 01 2014
(PARI) Vec(x*(1+x+x^2)/(1-2*x^2-x^4) + O(x^50)) \\ Michel Marcus, Nov 28 2015
CROSSREFS
KEYWORD
nonn,easy,tabf
AUTHOR
Vincenzo Librandi, Jan 19 2009
EXTENSIONS
First term in two pairs corrected by R. J. Mathar, Feb 19 2009
STATUS
approved