login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 6*a(n-1) + 30*a(n-2), n>2; a(0)=1, a(1)=1, a(2)=11.
6

%I #18 Dec 31 2023 11:36:08

%S 1,1,11,96,906,8316,77076,711936,6583896,60861456,562685616,

%T 5201957376,48092312736,444612597696,4110444968256,38001047740416,

%U 351319635490176,3247949245153536,30027284535626496,277602184568365056

%N a(n) = 6*a(n-1) + 30*a(n-2), n>2; a(0)=1, a(1)=1, a(2)=11.

%C The sequences A155001, A155000, A154999, A154997 and A154996 have a common form: a(0)=a(1)=1, a(2)= 2*b+1, a(n) = (b+1)*(a(n-1) + b*a(n-2)), with b some constant. The generating function of these is (1 - b*x - b^2*x^2)/(1 - (b+1)*x - b*(1+b)*x^2). - _R. J. Mathar_, Jan 20 2009

%H G. C. Greubel, <a href="/A154997/b154997.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (6,30).

%F G.f.: (1 -5*x -25*x^2)/(1 -6*x -30*x^2).

%F a(n+1) = Sum_{k=0..n} A154929(n,k)*5^(n-k).

%p m:=30; S:=series( (1-5*x-25*x^2)/(1-6*x-30*x^2), x, m+1):

%p seq(coeff(S, x, j), j=0..m); # _G. C. Greubel_, Apr 21 2021

%t Join[{1},LinearRecurrence[{6,30},{1,11},20]] (* _Harvey P. Dale_, Feb 07 2012 *)

%o (Magma) I:=[1,11]; [1] cat [n le 2 select I[n] else 6*(Self(n-1) +5*Self(n-2)): n in [1..30]]; // _G. C. Greubel_, Apr 21 2021

%o (Sage)

%o def A154996_list(prec):

%o P.<x> = PowerSeriesRing(ZZ, prec)

%o return P( (1-5*x-25*x^2)/(1-6*x-30*x^2) ).list()

%o A154996_list(30) # _G. C. Greubel_, Apr 21 2021

%Y Cf. A154996, A154999, A155000, A155001.

%K nonn

%O 0,3

%A _Philippe Deléham_, Jan 18 2009