Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #14 Nov 13 2022 14:26:04
%S 1,1,3,5,10,18,34,62,115,211,389,715,1316,2420,4452,8188,15061,27701,
%T 50951,93713,172366,317030,583110,1072506,1972647,3628263,6673417,
%U 12274327,22576008,41523752,76374088,140473848,258371689,475219625
%N Diagonal sums of Riordan array A154948.
%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (1,2,0,-1,-1)
%F G.f.: 1/((1-x^2)(1 - x - x^2 - x^3)).
%F a(n) = sum{k=0..floor(n/2), sum{j=0..n-k+1, C(n-k+1-j,k+1)C(k-1,j)}}.
%F a(n) = -A000035(n)/2 + A001590(n+4)/2. - _R. J. Mathar_, Oct 25 2012
%t a=0; b=0; c=0; lst={}; Do[z=a+b+c+1; AppendTo[lst,z]; a=b; b=c; c=z; z=a+b+c; AppendTo[lst,z]; a=b; b=c; c=z,{n,5!}]; lst (* _Vladimir Joseph Stephan Orlovsky_, Feb 17 2010 *)
%t LinearRecurrence[{1,2,0,-1,-1},{1,1,3,5,10},40] (* _Harvey P. Dale_, Nov 13 2022 *)
%K easy,nonn
%O 0,3
%A _Paul Barry_, Jan 17 2009