Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #17 Jan 26 2020 20:56:51
%S 1,2,1,3,4,1,5,10,6,1,8,22,21,8,1,13,45,59,36,10,1,21,88,147,124,55,
%T 12,1,34,167,339,366,225,78,14,1,55,310,741,976,770,370,105,16,1,89,
%U 566,1557,2422,2337,1443,567,136,18,1,144,1020,3174,5696,6505,4920,2485
%N A Fibonacci convolution triangle.
%C Row sums are A028859. Diagonal sums are A141015(n+1). Inverse is A154930. Product of A030528 and A007318.
%C Transforms sequence m^n with g.f. 1/(1-m*x) to the sequence with g.f. (1+x)/(1-(m+1)x-(m+1)x^2).
%C Subtriangle of triangle T(n,k), given by (0, 2, -1/2, -1/2, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. This triangle is the Riordan array (1, x(1+x)/(1-x-x^2)). - _Philippe Deléham_, Jan 25 2012
%H Michael De Vlieger, <a href="/A154929/b154929.txt">Table of n, a(n) for n = 0..11475</a> (rows 0 <= n <= 150)
%H Milan Janjić, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL21/Janjic/janjic93.html">Words and Linear Recurrences</a>, J. Int. Seq. 21 (2018), #18.1.4.
%F Riordan array ((1+x)/(1-x-x^2), x(1+x)/(1-x-x^2));
%F Triangle T(n,k) = Sum_{j=0..n} C(j+1,n-j)*C(j,k).
%F T(n,k) = T(n-1,k) + T(n-1,k-1) + T(n-2,k) + T(n-2,k-1), T(0,0)=1, T(1,0)=2, T(n,k)=0 if k > n. - _Philippe Deléham_, Jan 18 2009
%F Sum_{k=0..n} T(n,k)*x^k = A000045(n+1), A028859(n), A125145(n), A086347(n+1) for x=0,1,2,3 respectively. - _Philippe Deléham_, Jan 19 2009
%e Triangle begins
%e 1;
%e 2, 1;
%e 3, 4, 1;
%e 5, 10, 6, 1;
%e 8, 22, 21, 8, 1;
%e 13, 45, 59, 36, 10, 1;
%e 21, 88, 147, 124, 55, 12, 1;
%e 34, 167, 339, 366, 225, 78, 14, 1;
%e 55, 310, 741, 976, 770, 370, 105, 16, 1;
%e Production array is
%e 2, 1;
%e -1, 2, 1;
%e 3, -1, 2, 1;
%e -10, 3, -1, 2, 1;
%e 36, -10, 3, -1, 2, 1;
%e -137, 36, -10, 3, -1, 2, 1;
%e 543, -137, 36, -10, 3, -1, 2, 1;
%e or ((1+x+sqrt(1+6x+5x^2))/2,x) beheaded.
%e T(5,3) = T(4,3) + T(4,2) + T(3,3) + T(3,2) = 8 + 21 + 1 + 6 = 36. - _Philippe Deléham_, Jan 18 2009
%e From _Philippe Deléham_, Jan 25 2012: (Start)
%e Triangle (0,2,-1/2,-1/2,0,0,0,...) DELTA (1,0,0,0,0,0,...) begins:
%e 1;
%e 0, 1;
%e 0, 2, 1;
%e 0, 3, 4, 1;
%e 0, 5, 10, 6, 1;
%e 0, 8, 22, 21, 8, 1;
%e 0, 13, 45, 59, 36, 10, 1;
%e 0, 21, 88, 147, 124, 55, 12, 1; (End)
%t Table[Sum[Binomial[j + 1, n - j] Binomial[j, k], {j, 0, n}], {n, 0, 10}, {k, 0, n}] // Flatten (* _Michael De Vlieger_, Apr 25 2018 *)
%K easy,nonn,tabl
%O 0,2
%A _Paul Barry_, Jan 17 2009