login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Period 6: repeat [8, 7, 4, 5, 2, 1].
2

%I #15 Mar 15 2024 02:22:54

%S 8,7,4,5,2,1,8,7,4,5,2,1,8,7,4,5,2,1,8,7,4,5,2,1,8,7,4,5,2,1,8,7,4,5,

%T 2,1,8,7,4,5,2,1,8,7,4,5,2,1,8,7,4,5,2,1,8,7,4,5,2,1,8,7,4,5,2,1,8,7,

%U 4,5,2,1,8,7,4,5,2,1,8,7,4,5,2,1,8,7

%N Period 6: repeat [8, 7, 4, 5, 2, 1].

%C Obtained through reversion of the period in A153990, or by taking a half period of A154811.

%C Shares digits with other 6-periodic sequences, see the list in A153130.

%C Also the decimal expansion of the constant 97169/111111. [_R. J. Mathar_, Jan 23 2009]

%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,0,0,0,1).

%F a(n) = (8*A153990(n)) mod 9.

%F G.f.: (8+7*x+4*x^2+5*x^3+2*x^4+x^5)/((1-x)*(1+x)*(1+x+x^2)(x^2-x+1)). [_R. J. Mathar_, Jan 23 2009]

%F From _Wesley Ivan Hurt_, Jun 23 2016: (Start)

%F a(n) = a(n-6) for n>5.

%F a(n) = (27 + cos(n*Pi) + 8*cos(n*Pi/3) + 12*cos(2*n*Pi/3) + 8*sqrt(3)*sin(n*Pi/3) + 4*sqrt(3)*sin(2*n*Pi/3))/6. (End)

%p A154815:=n->[8, 7, 4, 5, 2, 1][(n mod 6)+1]: seq(A154815(n), n=0..100); # _Wesley Ivan Hurt_, Jun 23 2016

%t PadRight[{}, 100, {8, 7, 4, 5, 2, 1}] (* _Wesley Ivan Hurt_, Jun 23 2016 *)

%o (Magma) &cat [[8, 7, 4, 5, 2, 1]^^20]; // _Wesley Ivan Hurt_, Jun 23 2016

%Y Cf. A153130, A153990, A154811.

%K nonn,easy

%O 0,1

%A _Paul Curtz_, Jan 15 2009

%E Edited by _R. J. Mathar_, Jan 23 2009