login
Odd partition numbers of odd numbers.
9

%I #15 Aug 31 2015 10:31:21

%S 1,3,7,15,101,297,1255,4565,10143,14883,21637,31185,44583,63261,

%T 173525,239943,329931,1121505,1505499,2679689,3554345,4697205,6185689,

%U 10619863,18004327,23338469,30167357,38887673,49995925,64112359,82010177

%N Odd partition numbers of odd numbers.

%C Odd numbers in A058695.

%H Alois P. Heinz, <a href="/A154795/b154795.txt">Table of n, a(n) for n = 1..1000</a>

%e 7 is in the sequence because the odd number 5 has partition number 7 (5,41,32,311,2221,22111,1111111). - _Emeric Deutsch_, Aug 02 2009

%p aa:= proc(n, i) if n=0 then 1 elif n<0 or i=0 then 0 else aa(n,i):= aa(n, i-1) +aa(n-i, i) fi end: a:= proc(n) local k; if n>1 then a(n-1) fi; for k from `if`(n=1, 1, b(n-1)+2) by 2 while irem(aa(k, k), 2)=0 do od; b(n):= k; aa(k, k) end: seq(a(n), n=1..40); # _Alois P. Heinz_, Jul 28 2009

%p with(combinat): a := proc (n) if `mod`(numbpart(2*n-1), 2) = 1 then numbpart(2*n-1) else end if end proc: seq(a(n), n = 1 .. 50); # _Emeric Deutsch_, Aug 02 2009

%t Reap[Do[If[OddQ[p = PartitionsP[n]], Sow[p]], {n, 1, 99, 2}]][[2, 1]] (* _Jean-François Alcover_, Aug 31 2015 *)

%Y Cf. A000041, A005408, A058695, A154796, A154797, A154798.

%K nonn

%O 1,2

%A _Omar E. Pol_, Jan 26 2009

%E More terms from _Alois P. Heinz_, Jul 28 2009