login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A154702
Triangular sequence defined by T(n, m) = Coefficients(q(x,n) + x^(n-2)*q(1/x,n))/4, where q(x, n) = d^2*P(x, n)/dx^2 and p(x, n)=(x-1)^(n+1)*Sum_{k>=0} ((-1)^(n + 1)*k^n)*x^(k-1).
1
1, 7, 7, 36, 78, 36, 156, 624, 624, 156, 603, 4224, 7146, 4224, 603, 2157, 25281, 68322, 68322, 25281, 2157, 7318, 137622, 578130, 882340, 578130, 137622, 7318, 23938, 696970, 4433382, 9965710, 9965710, 4433382, 696970, 23938
OFFSET
3,2
COMMENTS
Row sums equal A037960(n+1) = (n + 2)!*n*(3*n + 1)/24.
EXAMPLE
Triangle begins as:
1;
7, 7;
36, 78, 36;
156, 624, 624, 156;
603, 4224, 7146, 4224, 603;
2157, 25281, 68322, 68322, 25281, 2157;
7318, 137622, 578130, 882340, 578130, 137622, 7318;
23938, 696970, 4433382, 9965710, 9965710, 4433382, 696970, 23938;
MATHEMATICA
p[x_, n_] := Sum[k!*StirlingS2[n, k]*(x - 1)^(n - k), {k, 1, n}];
(* or p[x_, n_]:= (x-1)^(n+1)*Sum[((-1)^(n+1)*k^n)*x^k, {k, 0, Infinity}]/x; *)
q[x_, n_]:= D[p[x, n], {x, 2}];
f[n_]:= CoefficientList[FullSimplify[ExpandAll[q[x, n]]], x];
Table[(f[n] + Reverse[f[n]])/4, {n, 1, 10}]//Flatten (* modified by G. C. Greubel, May 08 2019 *)
CROSSREFS
Cf. A037960.
Sequence in context: A241866 A243123 A372230 * A112685 A201958 A351477
KEYWORD
nonn
AUTHOR
Roger L. Bagula, Jan 14 2009
EXTENSIONS
Edited by G. C. Greubel, May 08 2019
STATUS
approved