login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Averages of twin prime pairs k such that k*13 and k/13 are squares.
4

%I #14 Dec 25 2019 04:49:40

%S 1872,7488,11700,825552,990288,1123668,1629108,3146832,3302208,

%T 4680000,6627348,7667712,8783892,15502032,16017300,16365492,17252352,

%U 25407252,32617728,42401268,42966612,54100800,66163968,71182800,73019700

%N Averages of twin prime pairs k such that k*13 and k/13 are squares.

%C Terms of this sequence must be of the form 13(6m)^2, the values for m are listed in A154775. - _M. F. Hasler_, Jan 15 2009

%H Amiram Eldar, <a href="/A154675/b154675.txt">Table of n, a(n) for n = 1..10000</a>

%F a(n) = 468 A154775(n)^2 - _M. F. Hasler_, Jan 15 2009

%t lst={};Do[If[PrimeQ[n-1]&&PrimeQ[n+1],s=(n*13)^(1/2);If[Floor[s]==s,AppendTo[lst,n]]],{n,6,11!,6}];lst

%t (* ... and/or ... *)

%t lst={};Do[If[PrimeQ[n-1]&&PrimeQ[n+1],s=(n/13)^(1/2);If[Floor[s]==s,AppendTo[lst,n]]],{n,6,11!,6}];lst

%t Select[13*Range[10^3]^2, And @@ PrimeQ[# + {-1, 1}] &] (* _Amiram Eldar_, Dec 25 2019 *)

%o (PARI) for(i=1,499, isprime(468*i^2+1) && isprime(468*i^2-1) && print1(468*i^2",")) \\ _M. F. Hasler_, Jan 15 2009

%Y Cf. A154670, A154671, A154672, A154673, A154674, A154775.

%K nonn

%O 1,1

%A _Vladimir Joseph Stephan Orlovsky_, Jan 13 2009

%E More terms from _M. F. Hasler_, Jan 15 2009