login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangular T(n,k) = binomial(prime(n+1) - 1, prime(k+1) - 1) with T(n,0) = 1, read by rows.
2

%I #19 Dec 26 2023 13:05:09

%S 1,1,1,1,6,1,1,15,15,1,1,45,210,210,1,1,66,495,924,66,1,1,120,1820,

%T 8008,8008,1820,1,1,153,3060,18564,43758,18564,153,1,1,231,7315,74613,

%U 646646,646646,74613,7315,1,1,378,20475,376740,13123110,30421755,30421755,13123110,376740,1

%N Triangular T(n,k) = binomial(prime(n+1) - 1, prime(k+1) - 1) with T(n,0) = 1, read by rows.

%C Row sums are: {1, 2, 8, 32, 467, 1553, 19778, 84254, 1457381, 87864065, 354929117, ...}.

%H G. C. Greubel, <a href="/A154653/b154653.txt">Rows n = 0..100 of triangle, flattened</a>

%H A. Lakhtakia, R. Messier, V. K. Varadan, V. V. Varadan, <a href="http://dx.doi.org/10.1103/PhysRevA.34.2501">Use of combinatorial algebra for diffusion on fractals</a>, Physical Review A, volume 34, Number 3 (1986) p. 2503 (7b).

%F T(n,k) = binomial(prime(n+1) - 1, prime(k+1) - 1) with T(n,0) = 1.

%e Triangle begins as:

%e 1;

%e 1, 1;

%e 1, 6, 1;

%e 1, 15, 15, 1;

%e 1, 45, 210, 210, 1;

%e 1, 66, 495, 924, 66, 1;

%e 1, 120, 1820, 8008, 8008, 1820, 1;

%e 1, 153, 3060, 18564, 43758, 18564, 153, 1;

%e 1, 231, 7315, 74613, 646646, 646646, 74613, 7315, 1;

%p seq(seq( `if`(k=0, 1, binomial(ithprime(n+1)-1, ithprime(k+1)-1) ), k=0..n), n=0..10); # _G. C. Greubel_, Dec 02 2019

%t T[n_, k_]:= If[k==0, 1, Binomial[Prime[n+1] -1, Prime[k+1] -1]]; Table[T[n, k], {n,0,10}, {k,0,n}]//Flatten

%o (PARI) T(n,k) = if(k==0, 1, binomial(prime(n+1)-1, prime(k+1)-1) ); \\ _G. C. Greubel_, Dec 02 2019

%o (Magma) [k eq 0 select 1 else Binomial(NthPrime(n+1)-1, NthPrime(k+1)-1): k in [0..n], n in [0..10]]; // _G. C. Greubel_, Dec 02 2019

%o (Sage)

%o def T(n, k):

%o if (k==0): return 1

%o else: return binomial(nth_prime(n+1)-1, nth_prime(k+1)-1)

%o [[T(n, k) for k in (0..n)] for n in (0..10)] # _G. C. Greubel_, Dec 02 2019

%Y Cf. A154652.

%K nonn,tabl

%O 0,5

%A _Roger L. Bagula_, Jan 13 2009

%E Edited by _G. C. Greubel_, Dec 02 2019