login
A154612
a(n) = 17*n + 7.
2
7, 24, 41, 58, 75, 92, 109, 126, 143, 160, 177, 194, 211, 228, 245, 262, 279, 296, 313, 330, 347, 364, 381, 398, 415, 432, 449, 466, 483, 500, 517, 534, 551, 568, 585, 602, 619, 636, 653, 670, 687, 704, 721, 738, 755, 772, 789, 806, 823, 840, 857, 874, 891
OFFSET
0,1
COMMENTS
a(n)^4 = Sum_{j=0..(16*n*(17*n+14)+46)} (-1)^j*(119*n^2 + 98*n + 20 + j)^2. - Bruno Berselli, Apr 30 2010
FORMULA
G.f.: (7+10*x)/(1-x)^2. - Colin Barker, Jan 09 2012
a(n) = 2*a(n-1) - a(n-2). - Vincenzo Librandi, Feb 26 2012
E.g.f.: (7 + 17*x)*exp(x). - G. C. Greubel, May 31 2024
EXAMPLE
For n=5, a(5)^4 = 92^4 = 71639296 = 3485^2-3486^2+3487^2-..+11449^2-11450^2+11451^2. - Bruno Berselli, Apr 30 2010
MATHEMATICA
Range[7, 1000, 17] (* Vladimir Joseph Stephan Orlovsky, Jun 01 2011 *)
PROG
(Magma) I:=[7, 24]; [n le 2 select I[n] else 2*Self(n-1)-Self(n-2): n in [1..50]]; // Vincenzo Librandi, Feb 21 2012
(PARI) for(n=0, 50, print1(17*n + 7", ")); \\ Vincenzo Librandi, Feb 26 2012
(SageMath) [17*n+7 for n in range(61)] # G. C. Greubel, May 31 2024
CROSSREFS
Sequences of the form 17*n+q: A361692 (q=-1), A008599 (q=0), A215137 (q=1), this sequence (q=7).
Sequence in context: A076673 A270422 A063165 * A031084 A063136 A031306
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Jan 15 2009
EXTENSIONS
Offset corrected by Bruno Berselli, Aug 16 2010
STATUS
approved