login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A154593
A triangle of polynomial coefficients:{a, b, c, d} = {2, 3, 3, 2}; p(x,n)=(-1)^(n)*(1 - d - c x)^(n + 1)*Sum[(a*k + b)^n*(c*x + d)^k, {k, 0, Infinity}].
1
1, -1, 3, 9, 6, 9, -73, -75, 9, 27, 849, 1644, 774, 108, 81, -12241, -33849, -28098, -6426, 243, 243, 211929, 763314, 938007, 442044, 60183, 1458, 729, -4280473, -18995271, -31035393, -22471479, -6681123, -528525, 3645, 2187, 98806689
OFFSET
0,3
COMMENTS
Row sums are:
{1, 2, 24, -112, 3456, -80128, 2417664, -83986432, 3340271616, -149428830208, \ 7427651272704,...}
This result is from a scan of {a,b,c,d} that are quadratic symmetric.
FORMULA
{a, b, c, d} = {2, 3, 3, 2};
p(x,n)=(-1)^(n)*(1 - d - c x)^(n + 1)*Sum[(a*k + b)^n*(c*x + d)^k, {k, 0, Infinity}];
t(n,m)=coefficients(p(x,n)).
p(x,n)=(-2)^n *(-1 - 3 x)^(1 + n)* LerchPhi[2 + 3 x, -n, 3/2]
EXAMPLE
{1},
{-1, 3},
{9, 6, 9},
{-73, -75, 9, 27},
{849, 1644, 774,108, 81},
{-12241, -33849, -28098, -6426, 243, 243},211929, 763314, 938007, 442044, 60183, 1458, 729},
{-4280473, -18995271, -31035393, -22471479, -6681123, -528525, 3645, 2187},
{98806689, 521068632, 1064559708, 1049509224, 501783174, 99717480, 4802652, 17496, 6561},
{-2565862561, -15676328181, -38479393620, -48196931796, -32188014414, -10798177878, -1481190948, -42996420, 45927, 19683},
{74035143849, 514213447902, 1474631881461, 2244768645096, 1936955084130, 932814106740, 227841626466, 22003372008, 387709173, 196830, 59049}
MATHEMATICA
Clear[p, a, b, c, d, n];
{a, b, c, d} = {2, 3, 3, 2};
p[x_, n_] = (-1)^(n)*(1 - d - c x)^(n + 1)*Sum[(a*k + b)^n*(c*x + d)^k, {k, 0, Infinity}];
Table[FullSimplify[ExpandAll[p[x, n]]], {n, 0, 10}];
Table[CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x], {n, 0, 10}];
Flatten[%]
CROSSREFS
Sequence in context: A189272 A349403 A131954 * A283439 A134693 A096948
KEYWORD
uned,tabl,sign
AUTHOR
Roger L. Bagula, Jan 12 2009
STATUS
approved