login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A154389
Nonprimes whose largest digit is an odd nonprime.
1
1, 9, 10, 39, 49, 69, 90, 91, 92, 93, 94, 95, 96, 98, 99, 100, 110, 111, 119, 129, 159, 169, 189, 190, 192, 194, 195, 196, 198, 209, 219, 249, 259, 279, 289, 290, 291, 292, 294, 295, 296, 297, 298, 299, 309, 319, 329, 339, 369, 390, 391, 392, 393, 394, 395, 396
OFFSET
1,2
COMMENTS
I.e., nonprimes whose largest digit is 1 or 9. - Jon E. Schoenfield, Feb 11 2019
LINKS
EXAMPLE
1 is a term because it is nonprime and its largest digit, 1, is an odd nonprime.
9 is a term because it is nonprime and its largest digit, 9, is an odd nonprime.
10 is a term because it is nonprime and its largest digit, 1, is an odd nonprime.
39 is a term because it is nonprime and its largest digit, 9, is an odd nonprime.
MAPLE
A141468 := proc(n) option remember; if n <= 3 then op(n, [0, 1, 4]) ; else for a from procname(n-1)+1 do if not isprime(a) then return a; end if; end do: end if; end proc:
A054055 := proc(n) max( op(convert(n, base, 10)) ) ; end proc:
for n from 1 to 500 do c := A141468(n) ; if A054055(c) in {1, 9} then printf("%d, ", c ) ; end if; end do: # R. J. Mathar, May 05 2010
MATHEMATICA
ldQ[n_] := Module[{midn = Max[IntegerDigits[n]]}, OddQ[midn] && !PrimeQ[midn]]
Select[Complement[Range[450], Prime[Range[PrimePi[450]]]], ldQ] (* Harvey P. Dale, Jan 31 2011 *)
PROG
(PARI) isok(n) = !isprime(n) && (d = vecmax(digits(n))) && (d % 2) && ! isprime(d); \\ Michel Marcus, Sep 16 2016
CROSSREFS
Cf. A054055 (largest digit).
Cf. A141468 (0 together with the nonprime numbers).
Sequence in context: A289520 A038206 A344132 * A041172 A248353 A156857
KEYWORD
nonn,base
AUTHOR
EXTENSIONS
Corrected (69 inserted, 111 inserted, 189 inserted, ...) by R. J. Mathar, May 05 2010
Example section edited by Jon E. Schoenfield, Feb 11 2019
STATUS
approved