login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = ( (5 + sqrt(6))^n - (5 - sqrt(6))^n )/(2*sqrt(6)).
2

%I #23 Sep 08 2022 08:45:40

%S 1,10,81,620,4661,34830,259741,1935640,14421321,107436050,800355401,

%T 5962269060,44415937981,330876267670,2464859855061,18361949464880,

%U 136787157402641,1018994534193690,7590989351286721,56548997363187100

%N a(n) = ( (5 + sqrt(6))^n - (5 - sqrt(6))^n )/(2*sqrt(6)).

%C First differences are in A164551.

%C Lim_{n -> infinity} a(n)/a(n-1) = 5 + sqrt(6) = 7.4494897427....

%H G. C. Greubel, <a href="/A154236/b154236.txt">Table of n, a(n) for n = 1..999</a>

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (10, -19).

%F From _Philippe Deléham_, Jan 06 2009: (Start)

%F a(n) = 10*a(n-1) - 19*a(n-2) for n > 1, with a(0)=0, a(1)=1.

%F G.f.: x/(1 - 10*x + 19*x^2). (End)

%t LinearRecurrence[{10, -19}, {1, 10}, 25] (* or *) Table[Simplify[((5 + Sqrt[6])^n -(5-Sqrt[6])^n)/(2*Sqrt[6])], {n, 1, 25}] (* _G. C. Greubel_, Sep 06 2016 *)

%o (Magma) Z<x>:=PolynomialRing(Integers()); N<r>:=NumberField(x^2-6); S:=[ ((5+r)^n-(5-r)^n)/(2*r): n in [1..25] ]; [ Integers()!S[j]: j in [1..#S] ]; // _Klaus Brockhaus_, Jan 07 2009

%o (Sage) [lucas_number1(n,10,19) for n in range(1, 25)] # _Zerinvary Lajos_, Apr 26 2009

%o (PARI) a(n)=([0,1; -19,10]^(n-1)*[1;10])[1,1] \\ _Charles R Greathouse IV_, Sep 07 2016

%Y Cf. A010464 (decimal expansion of square root of 6), A164551.

%K nonn,easy

%O 1,2

%A Al Hakanson (hawkuu(AT)gmail.com), Jan 05 2009

%E Extended beyond a(7) by _Klaus Brockhaus_, Jan 07 2009

%E Edited by _Klaus Brockhaus_, Oct 04 2009