login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A154146
Numbers k such that 16 plus the k-th triangular number is a perfect square.
4
0, 14, 17, 87, 104, 510, 609, 2975, 3552, 17342, 20705, 101079, 120680, 589134, 703377, 3433727, 4099584, 20013230, 23894129, 116645655, 139265192, 679860702, 811697025
OFFSET
0,2
COMMENTS
Numbers k such that x=2*k+1 satisfies the Pell-type equation x^2 = 8*y^2 - 127. - Robert Israel, Jul 18 2019
LINKS
FORMULA
{k: 16+k*(k+1)/2 in A000290}.
Conjectures: (Start)
a(n) = +a(n-1) +6*a(n-2) -6*a(n-3) -a(n-4) +a(n-5).
G.f.: x^2*(-14-3*x+14*x^2+x^3)/((x-1) * (x^2-2*x-1) * (x^2+2*x-1)).
G.f.: ( 2 + (8+23*x)/(x^2-2*x-1) + 1/(x-1) + (-7+6*x)/(x^2+2*x-1) )/2. (End)
Conjectures confirmed: see link. - Robert Israel, Jul 18 2019
EXAMPLE
0, 14, 17, and 87 are terms:
0* (0+1)/2 + 16 = 4^2,
14*(14+1)/2 + 16 = 11^2,
17*(17+1)/2 + 16 = 13^2,
87*(87+1)/2 + 16 = 62^2.
MAPLE
f:= gfun:-rectoproc({a(n+4)-6*a(n+2)+a(n)=2, a(0)=0, a(1)=14, a(2)=17, a(3)=87}, a(n), remember):
map(f, [$0..40]); # Robert Israel, Jul 18 2019
MATHEMATICA
Join[{0}, Select[Range[0, 1000], ( Ceiling[Sqrt[#*(# + 1)/2]] )^2 - #*(# + 1)/2 == 16 &]] (* G. C. Greubel, Sep 03 2016 *)
PROG
(PARI) {for (n=0, 10^9, if ( issquare(n*(n+1)\2 + 16), print1(n, ", ") ) ); }
CROSSREFS
KEYWORD
nonn,less,changed
AUTHOR
R. J. Mathar, Oct 18 2009
STATUS
approved